Базисное решение системы может иметь вид. Решение систем линейных алгебраических уравнений, методы решения, примеры

Так как не всякое базисное решение является опорным, то возникают вычислительные затруднения при нахождении опорных решений системы обычным методом Гаусса. Приходится находить все базисные решения и из них выбирать опорные. Существует алгоритм, позволяющий сразу находить опорные решения.

  1. При заполнении исходной таблицы Гаусса все свободные члены делают неотрицательными.
  2. Ключевой элемент выбирается специальным образом:
    1. а) в качестве ключевого столбца выбирают любой столбец коэффициентов при неизвестных, если в нем есть хотя бы один положительный элемент;
    2. б) в качестве ключевой строки берется та, у которой отношение свободного члена к положительному элементу ключевого столбца минимально.

На пересечении ключевой строки и ключевого столбца находится ключевой элемент. Далее проводят обычное преобразование Жордана.

Однородные системы линейных уравнений

Пусть дана однородная система

Рассмотрим соответствующую неоднородную систему

С помощью матриц

эти системы можно записать в матричном виде.

A `x = . (8.3)

A `x = `b . (8.4)

Справедливы следующие свойства решений однородной и неоднородной систем.

Теорема 8.23. Линейная комбинация решений однородной системы (8.1) является решением однородной системы.

Доказательство. Пусть `x , `y и `z - решения однородной системы. Рассмотрим `t = α`x + β`y + γ`z , где α, β и γ - некоторые произвольные числа. Так как `x , `y и `z являются решениями, то A `x = , A `y = и A `z = . Найдем A `t .

A `t = A · (α`x + β`y + γ`z ) = A · α`x + A · β`y + A · γ`z =

= αA `x + βA `y + γA `z = α + β + γ = .

A `t = Þ`t является решением системы.

Теорема 8.24. Разность двух решений неоднородной системы (8.2) является решением однородной системы (8.1).



Доказательство. Пусть `x и ` y - решения системы. Рассмотрим `t = `x - `y .

A `x = `b , A `y = `b

A `t = A (`x - `y ) = A `x - A `y = `b - `b =.

`t = `x + `y является решением однородной системы.

Теорема 8.25. Сумма решения однородной системы с решением неоднородной системы есть решение неоднородной системы.

Доказательство. Пусть `x - решение однородной системы, `y - решение неоднородной системы. Покажем, что `t = `x + `y - решение неоднородной системы.

A `x = , A `y = `b

A `t = A (`x + `y ) = A `x + A `y = `b + = `b .

A `t = `b Þ`t является решением неоднородной системы.

Рассмотрим однородную систему

x 1 = x 2 = … = x n

Теорема 8.26.

Доказательство. с 1 , с 2 , …, с n m

А линейно зависима. А n , т. е. r(A) < n.

Следствие.

Доказательство. Так как r(A) < n

Совместность однородной системы

Рассмотрим однородную систему

Однородная система всегда совместна, так как имеет тривиальное (нулевое) решение x 1 = x 2 = … = x n = 0. Выясним, когда данная система имеет нетривиальное решение.

Теорема 8.26. Однородная система имеет нетривиальное решение тогда и только тогда, когда ранг матрицы, составленной из коэффициентов при неизвестных, меньше числа неизвестных.

Доказательство. Пусть система имеет нетривиальное решение. Это может быть тогда и только тогда, когда найдутся числа с 1 , с 2 , …, с n , не все равные нулю, при подстановке которых в систему мы получим m тождеств. Эти m тождеств можно записать в виде

Следовательно, система векторов-столбцов матрицы А линейно зависима. А это может быть тогда и только тогда, когда ранг системы векторов-столбцов меньше n , т. е. r(A) < n.

Следствие. Однородная система с квадратной матрицей имеет нетривиальное решение тогда и только тогда, когда определитель матрицы, составленной из коэффициентов при неизвестных, равен нулю.

Доказательство. Так как r(A) < n , то столбцы матрицы линейно зависимы и, следовательно, определитель матрицы равен нулю.

Общее решение однородной системы

Система (8.1) всегда имеет тривиальное решение. Если ранг матрицы, составленной из коэффициентов при неизвестных, меньше числа неизвестных, то система (8.1) имеет нетривиальные решения.

1) r(A) = n - система (8.1) имеет только тривиальное решение:

2) r(A) = r < n - система (8.1) имеет нетривиальные решения.

Количество свободных переменных во втором случае будет равно n - r , а базисных r. Давая свободным переменным произвольные значения, мы будем получать различные решения системы (8.1), т. е. любому вектору размерности n - r

(с r + 1 , c r + 2 , …, c n)

будет соответствовать решение системы (8.1)

(с 1 , c 2 , …, c r , c r + 1 , …, c n).

Определение 8.51. Фундаментальной системой решений однородной системы (8.1) называется максимальная линейно независимая система решений системы (8.1). Фундаментальная система содержит n - r линейно независимых решений системы (8.1).

Чтобы получить фундаментальную систему решений, нужно в (n - r) -мерном пространстве взять линейно независимую систему из n - r векторов и по ним построить соответствующие решения системы (8.1). Полученные решения будут образовывать фундаментальную систему решений `x 1 , `x 2 , ..., `x n-r . Так как эта система максимальна, то любое решение системы (8.1) можно представить в виде линейной комбинации решений фундаментальной системы `x = α 1 `x 1 ‌ α 2 `x 2 ‌ ... ‌ α n-r `x n-r . Полученное выражение является общим решением однородной системы (8.1).

Пример 8.25.

x 1 , x 2 - базисные, x 3 , x 4 , x 5 - свободные. Два последних уравнения линейно выражаются через два первых, поэтому их можно отбросить:

ì3x 1 + x 2 - 8x 3 + 2x 4 + x 5 = 0, í î2x 1 - 2x 2 - 3x 3 - 7x 4 + 2x 5 = 0.

Выразим базисные переменные.

Умножим первое уравнение на 2 и сложим со вторым. Результат разделим на 8.

Умножим первое уравнение на 2, второе на -3 и сложим полученные уравнения. Результат разделим на 8.

В качестве значений свободных переменных возьмем координаты векторов трехмерного единичного базиса.

`x = α 1 `x 1 + α 2 `x 2 + α 3 `x 3 - общее решение однородной системы.

Сумма общего решения однородной системы (8.1) с любым решением неоднородной системы (8.2) является общим решением неоднородной системы (8.2).

Применение линейной алгебры в экономике

Производственные показатели

Предприятие выпускает ежесуточно четыре вида изделий, основные производственно-экономические показатели которых приведены в следующей таблице.

Требуется определить следующие ежесуточные показатели: расход сырья S , затраты рабочего времени Т и стоимость Р выпускаемой продукции предприятия.

По приведенным данным составим четыре вектора, характеризующие весь производственный цикл:

`q = (20, 50, 30, 40) - вектор ассортимента;

`s = (5, 2, 7, 4) - вектор расхода сырья;

= (10, 5, 15, 8) - вектор затрат рабочего времени;

`p = (30, 15, 45, 20) - ценовой вектор.

Тогда искомые величины будут представлять собой соответствующие скалярные произведения вектора ассортимента на три других вектора:

S = `q `s = 100 + 100 + 210 + 160 = 570 кг,

Т = `q = 1220 ч, P = `q `p = 3500 ден. ед.

Расход сырья

Предприятие выпускает четыре вида изделий с использованием четырех видов сырья. Нормы расхода сырья даны как элементы матрицы А :

Вид сырья 1 2 3 4

Вид изделия.

Требуется найти затраты сырья каждого вида при заданном плане выпуска каждого вида изделия: соответственно, 60, 50, 35 и 40 ед.

Составим вектор-план выпуска продукции:

`q = (60, 50, 35, 40).

Тогда решение задачи дается вектором затрат, координаты которого и являются величинами затрат сырья по каждому его виду: этот вектор затрат вычисляется как произведение вектора `q на матрицу А :

Конечный продукт отрасли

Отрасль состоит из n предприятий, выпускающих по одному виду продукции каждое: обозначим объем продукции i -го предприятия через х i . Каждое из предприятий отрасли для обеспечения своего производства потребляет часть продукции, выпускаемой им самим и другими предприятиями. Пусть а ij - доля продукции i -го предприятия, потребляемая j -м предприятием для обеспечения выпуска своей продукции объема х j . Найдем величину у i - количество продукции i -го предприятия, предназначенной для реализации вне данной отрасли (объем конечного продукта). Эта величина легко может быть подсчитана по формуле

Введем в рассмотрение квадратную матрицу порядка n , описывающую внутреннее потребление отрасли

A = (a ij); i,j = 1, 2, ..., n.

Тогда вектор конечного продукта является решением матричного уравнения

`x - A `x = `y

с использованием единичной матрицы Е получаем

(E - A )`x = `y

Пример 8.26. Пусть вектор выпуска продукции отрасли и матрица внутреннего потребления имеют, соответственно, вид

Получим вектор объемов конечного продукта, предназначенного для реализации вне отрасли, состоящей из трех предприятий:

Прогноз выпуска продукции

Пусть C = (c ij); i = 1, 2, ..., m, j = 1, 2, ..., n , - матрица затрат сырья t видов при выпуске продукции n видов. Тогда при известных объемах запаса каждого вида сырья, которые образуют соответствующий вектор

`q = (q 1 , q 2 , ..., q m)

вектор-план `x = (x 1 , x 2 , ..., x n ) выпуска продукции определяется из решения системы m уравнений с n неизвестными:

C `x T = `x T ,

где индекс «T » означает транспонирование вектора-строки в вектор-столбец.

Пример 8.27 . Предприятие выпускает три вида продукции, используя сырье трех видов. Необходимые характеристики производства представлены следующими данными:

Вид сырья Расход сырья по видам продукции, вес. ед./изд. Запас сырья, вес. ед.

Требуется определить объем выпуска продукции каждого вида при заданных запасах сырья.

Задачи такого рода типичны при прогнозах и оценках функционирования предприятий, экспертных оценках проектов освоения месторождений полезных ископаемых, а также в планировании микроэкономики предприятий.

Обозначим неизвестные объемы выпуска продукции через х 1 , х 2 и х 3 . Тогда при условии полного расхода запасов каждого вида сырья можно записать балансовые соотношения, которые образуют систему трех уравнений с тремя неизвестными:

Решая эту систему уравнений любым способом, находим, что при заданных запасах сырья объемы выпуска продукции составят по каждому виду соответственно (в условных единицах):

x 1 = 150, x 2 = 250, x 3 = 100.


Решение систем линейных алгебраических уравнений (СЛАУ), несомненно, является важнейшей темой курса линейной алгебры. Огромное количество задач из всех разделов математики сводится к решению систем линейных уравнений. Этими факторами объясняется причина создания данной статьи. Материал статьи подобран и структурирован так, что с его помощью Вы сможете

  • подобрать оптимальный метод решения Вашей системы линейных алгебраических уравнений,
  • изучить теорию выбранного метода,
  • решить Вашу систему линейных уравнений, рассмотрев подробно разобранные решения характерных примеров и задач.

Краткое описание материала статьи.

Сначала дадим все необходимые определения, понятия и введем обозначения.

Далее рассмотрим методы решения систем линейных алгебраических уравнений, в которых число уравнений равно числу неизвестных переменных и которые имеют единственное решение. Во-первых, остановимся на методе Крамера, во-вторых, покажем матричный метод решения таких систем уравнений, в-третьих, разберем метод Гаусса (метод последовательного исключения неизвестных переменных). Для закрепления теории обязательно решим несколько СЛАУ различными способами.

После этого перейдем к решению систем линейных алгебраических уравнений общего вида, в которых число уравнений не совпадает с числом неизвестных переменных или основная матрица системы является вырожденной. Сформулируем теорему Кронекера - Капелли, которая позволяет установить совместность СЛАУ. Разберем решение систем (в случае их совместности) с помощью понятия базисного минора матрицы. Также рассмотрим метод Гаусса и подробно опишем решения примеров.

Обязательно остановимся на структуре общего решения однородных и неоднородных систем линейных алгебраических уравнений. Дадим понятие фундаментальной системы решений и покажем, как записывается общее решение СЛАУ с помощью векторов фундаментальной системы решений. Для лучшего понимания разберем несколько примеров.

В заключении рассмотрим системы уравнений, сводящиеся к линейным, а также различные задачи, при решении которых возникают СЛАУ.

Навигация по странице.

Определения, понятия, обозначения.

Будем рассматривать системы из p линейных алгебраических уравнений с n неизвестными переменными (p может быть равно n ) вида

Неизвестные переменные, - коэффициенты (некоторые действительные или комплексные числа), - свободные члены (также действительные или комплексные числа).

Такую форму записи СЛАУ называют координатной .

В матричной форме записи эта система уравнений имеет вид ,
где - основная матрица системы, - матрица-столбец неизвестных переменных, - матрица-столбец свободных членов.

Если к матрице А добавить в качестве (n+1)-ого столбца матрицу-столбец свободных членов, то получим так называемую расширенную матрицу системы линейных уравнений. Обычно расширенную матрицу обозначают буквой Т , а столбец свободных членов отделяют вертикальной линией от остальных столбцов, то есть,

Решением системы линейных алгебраических уравнений называют набор значений неизвестных переменных , обращающий все уравнения системы в тождества. Матричное уравнение при данных значениях неизвестных переменных также обращается в тождество .

Если система уравнений имеет хотя бы одно решение, то она называется совместной .

Если система уравнений решений не имеет, то она называется несовместной .

Если СЛАУ имеет единственное решение, то ее называют определенной ; если решений больше одного, то – неопределенной .

Если свободные члены всех уравнений системы равны нулю , то система называется однородной , в противном случае – неоднородной .

Решение элементарных систем линейных алгебраических уравнений.

Если число уравнений системы равно числу неизвестных переменных и определитель ее основной матрицы не равен нулю, то такие СЛАУ будем называть элементарными . Такие системы уравнений имеют единственное решение, причем в случае однородной системы все неизвестные переменные равны нулю.

Такие СЛАУ мы начинали изучать в средней школе. При их решении мы брали какое-нибудь одно уравнение, выражали одну неизвестную переменную через другие и подставляли ее в оставшиеся уравнения, следом брали следующее уравнение, выражали следующую неизвестную переменную и подставляли в другие уравнения и так далее. Или пользовались методом сложения, то есть, складывали два или более уравнений, чтобы исключить некоторые неизвестные переменные. Не будем подробно останавливаться на этих методах, так как они по сути являются модификациями метода Гаусса.

Основными методами решения элементарных систем линейных уравнений являются метод Крамера, матричный метод и метод Гаусса. Разберем их.

Решение систем линейных уравнений методом Крамера.

Пусть нам требуется решить систему линейных алгебраических уравнений

в которой число уравнений равно числу неизвестных переменных и определитель основной матрицы системы отличен от нуля, то есть, .

Пусть - определитель основной матрицы системы, а - определители матриц, которые получаются из А заменой 1-ого, 2-ого, …, n-ого столбца соответственно на столбец свободных членов:

При таких обозначениях неизвестные переменные вычисляются по формулам метода Крамера как . Так находится решение системы линейных алгебраических уравнений методом Крамера.

Пример.

Методом Крамера .

Решение.

Основная матрица системы имеет вид . Вычислим ее определитель (при необходимости смотрите статью ):

Так как определитель основной матрицы системы отличен от нуля, то система имеет единственное решение, которое может быть найдено методом Крамера.

Составим и вычислим необходимые определители (определитель получаем, заменив в матрице А первый столбец на столбец свободных членов , определитель - заменив второй столбец на столбец свободных членов, - заменив третий столбец матрицы А на столбец свободных членов):

Находим неизвестные переменные по формулам :

Ответ:

Основным недостатком метода Крамера (если это можно назвать недостатком) является трудоемкость вычисления определителей, когда число уравнений системы больше трех.

Решение систем линейных алгебраических уравнений матричным методом (с помощью обратной матрицы).

Пусть система линейных алгебраических уравнений задана в матричной форме , где матрица A имеет размерность n на n и ее определитель отличен от нуля.

Так как , то матрица А – обратима, то есть, существует обратная матрица . Если умножить обе части равенства на слева, то получим формулу для нахождения матрицы-столбца неизвестных переменных . Так мы получили решение системы линейных алгебраических уравнений матричным методом.

Пример.

Решите систему линейных уравнений матричным методом.

Решение.

Перепишем систему уравнений в матричной форме:

Так как

то СЛАУ можно решать матричным методом. С помощью обратной матрицы решение этой системы может быть найдено как .

Построим обратную матрицу с помощью матрицы из алгебраических дополнений элементов матрицы А (при необходимости смотрите статью ):

Осталось вычислить - матрицу неизвестных переменных, умножив обратную матрицу на матрицу-столбец свободных членов (при необходимости смотрите статью ):

Ответ:

или в другой записи x 1 = 4, x 2 = 0, x 3 = -1 .

Основная проблема при нахождении решения систем линейных алгебраических уравнений матричным методом заключается в трудоемкости нахождения обратной матрицы, особенно для квадратных матриц порядка выше третьего.

Решение систем линейных уравнений методом Гаусса.

Пусть нам требуется найти решение системы из n линейных уравнений с n неизвестными переменными
определитель основной матрицы которой отличен от нуля.

Суть метода Гаусса состоит в последовательном исключении неизвестных переменных: сначала исключается x 1 из всех уравнений системы, начиная со второго, далее исключается x 2 из всех уравнений, начиная с третьего, и так далее, пока в последнем уравнении останется только неизвестная переменная x n . Такой процесс преобразования уравнений системы для последовательного исключения неизвестных переменных называется прямым ходом метода Гаусса . После завершения прямого хода метода Гаусса из последнего уравнения находится x n , с помощью этого значения из предпоследнего уравнения вычисляется x n-1 , и так далее, из первого уравнения находится x 1 . Процесс вычисления неизвестных переменных при движении от последнего уравнения системы к первому называется обратным ходом метода Гаусса .

Кратко опишем алгоритм исключения неизвестных переменных.

Будем считать, что , так как мы всегда можем этого добиться перестановкой местами уравнений системы. Исключим неизвестную переменную x 1 из всех уравнений системы, начиная со второго. Для этого ко второму уравнению системы прибавим первое, умноженное на , к третьему уравнению прибавим первое, умноженное на , и так далее, к n-ому уравнению прибавим первое, умноженное на . Система уравнений после таких преобразований примет вид

где , а .

К такому же результату мы бы пришли, если бы выразили x 1 через другие неизвестные переменные в первом уравнении системы и полученное выражение подставили во все остальные уравнения. Таким образом, переменная x 1 исключена из всех уравнений, начиная со второго.

Далее действуем аналогично, но лишь с частью полученной системы, которая отмечена на рисунке

Для этого к третьему уравнению системы прибавим второе, умноженное на , к четвертому уравнению прибавим второе, умноженное на , и так далее, к n-ому уравнению прибавим второе, умноженное на . Система уравнений после таких преобразований примет вид

где , а . Таким образом, переменная x 2 исключена из всех уравнений, начиная с третьего.

Далее приступаем к исключению неизвестной x 3 , при этом действуем аналогично с отмеченной на рисунке частью системы

Так продолжаем прямой ход метода Гаусса пока система не примет вид

С этого момента начинаем обратный ход метода Гаусса: вычисляем x n из последнего уравнения как , с помощью полученного значения x n находим x n-1 из предпоследнего уравнения, и так далее, находим x 1 из первого уравнения.

Пример.

Решите систему линейных уравнений методом Гаусса.

Решение.

Исключим неизвестную переменную x 1 из второго и третьего уравнения системы. Для этого к обеим частям второго и третьего уравнений прибавим соответствующие части первого уравнения, умноженные на и на соответственно:

Теперь из третьего уравнения исключим x 2 , прибавив к его левой и правой частям левую и правую части второго уравнения, умноженные на :

На этом прямой ход метода Гаусса закончен, начинаем обратный ход.

Из последнего уравнения полученной системы уравнений находим x 3 :

Из второго уравнения получаем .

Из первого уравнения находим оставшуюся неизвестную переменную и этим завершаем обратный ход метода Гаусса .

Ответ:

X 1 = 4, x 2 = 0, x 3 = -1 .

Решение систем линейных алгебраических уравнений общего вида.

В общем случае число уравнений системы p не совпадает с числом неизвестных переменных n :

Такие СЛАУ могут не иметь решений, иметь единственное решение или иметь бесконечно много решений. Это утверждение относится также к системам уравнений, основная матрица которых квадратная и вырожденная.

Теорема Кронекера – Капелли.

Прежде чем находить решение системы линейных уравнений необходимо установить ее совместность. Ответ на вопрос когда СЛАУ совместна, а когда несовместна, дает теорема Кронекера – Капелли :
для того, чтобы система из p уравнений с n неизвестными (p может быть равно n ) была совместна необходимо и достаточно, чтобы ранг основной матрицы системы был равен рангу расширенной матрицы, то есть, Rank(A)=Rank(T) .

Рассмотрим на примере применение теоремы Кронекера – Капелли для определения совместности системы линейных уравнений.

Пример.

Выясните, имеет ли система линейных уравнений решения.

Решение.

. Воспользуемся методом окаймляющих миноров. Минор второго порядка отличен от нуля. Переберем окаймляющие его миноры третьего порядка:

Так как все окаймляющие миноры третьего порядка равны нулю, то ранг основной матрицы равен двум.

В свою очередь ранг расширенной матрицы равен трем, так как минор третьего порядка

отличен от нуля.

Таким образом, Rang(A) , следовательно, по теореме Кронекера – Капелли можно сделать вывод, что исходная система линейных уравнений несовместна.

Ответ:

Система решений не имеет.

Итак, мы научились устанавливать несовместность системы с помощью теоремы Кронекера – Капелли.

А как же находить решение СЛАУ, если установлена ее совместность?

Для этого нам потребуется понятие базисного минора матрицы и теорема о ранге матрицы.

Минор наивысшего порядка матрицы А , отличный от нуля, называется базисным .

Из определения базисного минора следует, что его порядок равен рангу матрицы. Для ненулевой матрицы А базисных миноров может быть несколько, один базисный минор есть всегда.

Для примера рассмотрим матрицу .

Все миноры третьего порядка этой матрицы равны нулю, так как элементы третьей строки этой матрицы представляют собой сумму соответствующих элементов первой и второй строк.

Базисными являются следующие миноры второго порядка, так как они отличны от нуля

Миноры базисными не являются, так как равны нулю.

Теорема о ранге матрицы.

Если ранг матрицы порядка p на n равен r , то все элементы строк (и столбцов) матрицы, не образующие выбранный базисный минор, линейно выражаются через соответствующие элементы строк (и столбцов), образующих базисный минор.

Что нам дает теорема о ранге матрицы?

Если по теореме Кронекера – Капелли мы установили совместность системы, то выбираем любой базисный минор основной матрицы системы (его порядок равен r ), и исключаем из системы все уравнения, которые не образуют выбранный базисный минор. Полученная таким образом СЛАУ будет эквивалентна исходной, так как отброшенные уравнения все равно излишни (они согласно теореме о ранге матрицы являются линейной комбинацией оставшихся уравнений).

В итоге, после отбрасывания излишних уравнений системы, возможны два случая.

    Если число уравнений r в полученной системе будет равно числу неизвестных переменных, то она будет определенной и единственное решение можно будет найти методом Крамера, матричным методом или методом Гаусса.

    Пример.

    .

    Решение.

    Ранг основной матрицы системы равен двум, так как минор второго порядка отличен от нуля. Ранг расширенной матрицы также равен двум, так как единственный минор третьего порядка равен нулю

    а рассмотренный выше минор второго порядка отличен от нуля. На основании теоремы Кронекера – Капелли можно утверждать совместность исходной системы линейных уравнений, так как Rank(A)=Rank(T)=2 .

    В качестве базисного минора возьмем . Его образуют коэффициенты первого и второго уравнений:

    Третье уравнение системы не участвует в образовании базисного минора, поэтому исключим его из системы на основании теоремы о ранге матрицы:

    Так мы получили элементарную систему линейных алгебраических уравнений. Решим ее методом Крамера:

    Ответ:

    x 1 = 1, x 2 = 2 .

    Если число уравнений r в полученной СЛАУ меньше числа неизвестных переменных n , то в левых частях уравнений оставляем слагаемые, образующие базисный минор, остальные слагаемые переносим в правые части уравнений системы с противоположным знаком.

    Неизвестные переменные (их r штук), оставшиеся в левых частях уравнений, называются основными .

    Неизвестные переменные (их n - r штук), которые оказались в правых частях, называются свободными .

    Теперь считаем, что свободные неизвестные переменные могут принимать произвольные значения, при этом r основных неизвестных переменных будут выражаться через свободные неизвестные переменные единственным образом. Их выражение можно найти решая полученную СЛАУ методом Крамера, матричным методом или методом Гаусса.

    Разберем на примере.

    Пример.

    Решите систему линейных алгебраических уравнений .

    Решение.

    Найдем ранг основной матрицы системы методом окаймляющих миноров. В качестве ненулевого минора первого порядка возьмем a 1 1 = 1 . Начнем поиск ненулевого минора второго порядка, окаймляющего данный минор:

    Так мы нашли ненулевой минор второго порядка. Начнем поиск ненулевого окаймляющего минора третьего порядка:

    Таким образом, ранг основной матрицы равен трем. Ранг расширенной матрицы также равен трем, то есть, система совместна.

    Найденный ненулевой минор третьего порядка возьмем в качестве базисного.

    Для наглядности покажем элементы, образующие базисный минор:

    Оставляем в левой части уравнений системы слагаемые, участвующие в базисном миноре, остальные переносим с противоположными знаками в правые части:

    Придадим свободным неизвестным переменным x 2 и x 5 произвольные значения, то есть, примем , где - произвольные числа. При этом СЛАУ примет вид

    Полученную элементарную систему линейных алгебраических уравнений решим методом Крамера:

    Следовательно, .

    В ответе не забываем указать свободные неизвестные переменные.

    Ответ:

    Где - произвольные числа.

Подведем итог.

Чтобы решить систему линейных алгебраических уравнений общего вида, сначала выясняем ее совместность, используя теорему Кронекера – Капелли. Если ранг основной матрицы не равен рангу расширенной матрицы, то делаем вывод о несовместности системы.

Если ранг основной матрицы равен рангу расширенной матрицы, то выбираем базисный минор и отбрасываем уравнения системы, которые не участвуют в образовании выбранного базисного минора.

Если порядок базисного минора равен числу неизвестных переменных, то СЛАУ имеет единственное решение, которое находим любым известным нам методом.

Если порядок базисного минора меньше числа неизвестных переменных, то в левой части уравнений системы оставляем слагаемые с основными неизвестными переменными, остальные слагаемые переносим в правые части и придаем свободным неизвестным переменным произвольные значения. Из полученной системы линейных уравнений находим основные неизвестные переменные методом Крамера, матричным методом или методом Гаусса.

Метод Гаусса для решения систем линейных алгебраических уравнений общего вида.

Методом Гаусса можно решать системы линейных алгебраических уравнений любого вида без предварительного их исследования на совместность. Процесс последовательного исключения неизвестных переменных позволяет сделать вывод как о совместности, так и о несовместности СЛАУ, а в случае существования решения дает возможность отыскать его.

С точки зрения вычислительной работы метод Гаусса является предпочтительным.

Смотрите его подробное описание и разобранные примеры в статье метод Гаусса для решения систем линейных алгебраических уравнений общего вида .

Запись общего решения однородных и неоднородных систем линейных алгебраических с помощью векторов фундаментальной системы решений.

В этом разделе речь пойдет о совместных однородных и неоднородных системах линейных алгебраических уравнений, имеющих бесконечное множество решений.

Разберемся сначала с однородными системами.

Фундаментальной системой решений однородной системы из p линейных алгебраических уравнений с n неизвестными переменными называют совокупность (n – r) линейно независимых решений этой системы, где r – порядок базисного минора основной матрицы системы.

Если обозначить линейно независимые решения однородной СЛАУ как X (1) , X (2) , …, X (n-r) (X (1) , X (2) , …, X (n-r) – это матрицы столбцы размерности n на 1 ), то общее решение этой однородной системы представляется в виде линейной комбинации векторов фундаментальной системы решений с произвольными постоянными коэффициентами С 1 , С 2 , …, С (n-r) , то есть, .

Что обозначает термин общее решение однородной системы линейных алгебраических уравнений (орослау)?

Смысл прост: формула задает все возможные решения исходной СЛАУ, другими словами, взяв любой набор значений произвольных постоянных С 1 , С 2 , …, С (n-r) , по формуле мы получим одно из решений исходной однородной СЛАУ.

Таким образом, если мы найдем фундаментальную систему решений, то мы сможем задать все решения этой однородной СЛАУ как .

Покажем процесс построения фундаментальной системы решений однородной СЛАУ.

Выбираем базисный минор исходной системы линейных уравнений, исключаем все остальные уравнения из системы и переносим в правые части уравнений системы с противоположными знаками все слагаемые, содержащие свободные неизвестные переменные. Придадим свободным неизвестным переменным значения 1,0,0,…,0 и вычислим основные неизвестные, решив полученную элементарную систему линейных уравнений любым способом, например, методом Крамера. Так будет получено X (1) - первое решение фундаментальной системы. Если придать свободным неизвестным значения 0,1,0,0,…,0 и вычислить при этом основные неизвестные, то получим X (2) . И так далее. Если свободным неизвестным переменным придадим значения 0,0,…,0,1 и вычислим основные неизвестные, то получим X (n-r) . Так будет построена фундаментальная система решений однородной СЛАУ и может быть записано ее общее решение в виде .

Для неоднородных систем линейных алгебраических уравнений общее решение представляется в виде , где - общее решение соответствующей однородной системы, а - частное решение исходной неоднородной СЛАУ, которое мы получаем, придав свободным неизвестным значения 0,0,…,0 и вычислив значения основных неизвестных.

Разберем на примерах.

Пример.

Найдите фундаментальную систему решений и общее решение однородной системы линейных алгебраических уравнений .

Решение.

Ранг основной матрицы однородных систем линейных уравнений всегда равен рангу расширенной матрицы. Найдем ранг основной матрицы методом окаймляющих миноров. В качестве ненулевого минора первого порядка возьмем элемент a 1 1 = 9 основной матрицы системы. Найдем окаймляющий ненулевой минор второго порядка:

Минор второго порядка, отличный от нуля, найден. Переберем окаймляющие его миноры третьего порядка в поисках ненулевого:

Все окаймляющие миноры третьего порядка равны нулю, следовательно, ранг основной и расширенной матрицы равен двум. Базисным минором возьмем . Отметим для наглядности элементы системы, которые его образуют:

Третье уравнение исходной СЛАУ не участвует в образовании базисного минора, поэтому, может быть исключено:

Оставляем в правых частях уравнений слагаемые, содержащие основные неизвестные, а в правые части переносим слагаемые со свободными неизвестными:

Построим фундаментальную систему решений исходной однородной системы линейных уравнений. Фундаментальная система решений данной СЛАУ состоит из двух решений, так как исходная СЛАУ содержит четыре неизвестных переменных, а порядок ее базисного минора равен двум. Для нахождения X (1) придадим свободным неизвестным переменным значения x 2 = 1, x 4 = 0 , тогда основные неизвестные найдем из системы уравнений
.

Решим ее методом Крамера:

Таким образом, .

Теперь построим X (2) . Для этого придадим свободным неизвестным переменным значения x 2 = 0, x 4 = 1 , тогда основные неизвестные найдем из системы линейных уравнений
.

Опять воспользуемся методом Крамера:

Получаем .

Так мы получили два вектора фундаментальной системы решений и , теперь мы можем записать общее решение однородной системы линейных алгебраических уравнений:

, где C 1 и C 2 – произвольные числа. , равны нулю. Также примем минор в качестве базисного, исключим третье уравнение из системы и перенесем слагаемые со свободными неизвестными в правые части уравнений системы:

Для нахождения придадим свободным неизвестным переменным значения x 2 = 0 и x 4 = 0 , тогда система уравнений примет вид , откуда методом Крамера найдем основные неизвестные переменные:

Имеем , следовательно,

где C 1 и C 2 – произвольные числа.

Следует заметить, что решения неопределенной однородной системы линейных алгебраических уравнений порождают линейное пространство

Решение.

Каноническое уравнение эллипсоида в прямоугольной декартовой системе координат имеет вид . Наша задача состоит в определении параметров a , b и с . Так как эллипсоид проходит через точки А , В и С , то при подстановке их координат в каноническое уравнение эллипсоида оно должно обращаться в тождество. Так мы получим систему из трех уравнений:

Обозначим , тогда система станет системой линейных алгебраических уравнений .

Вычислим определитель основной матрицы системы:

Так как он отличен от нуля, то решение мы можем найти методом Крамера:
). Очевидно, что x = 0 и x = 1 являются корнями этого многочлена. Частным от деления на является . Таким образом, имеем разложение и исходное выражение примет вид .

Воспользуемся методом неопределенных коэффициентов.

Приравняв соответствующие коэффициенты числителей, приходим к системе линейных алгебраических уравнений . Ее решение даст нам искомые неопределенные коэффициенты А , В , С и D .

Решим систему методом Гаусса:

При обратном ходе метода Гаусса находим D = 0, C = -2, B = 1, A = 1 .

Получаем,

Ответ:

.

где x * - один из решений неоднородной системы (2) (например (4)), (E−A + A) образует ядро (нуль пространство) матрицы A .

Сделаем скелетное разложение матрицы (E−A + A) :

E−A + A=Q·S

где Q n×n−r - матрица rank(Q)=n−r , S n−r×n -матрица rank(S)=n−r .

Тогда (13) можно записать в следующем виде:

x=x*+Q·k, kR n-r .

где k=Sz .

Итак, процедура нахождения общего решения системы линейных уравнений с помощью псевдообратной матрицы можно представить в следующем виде:

  1. Вычисляем псевдообратную матрицу A + .
  2. Вычисляем частное решение неоднородной системы линейных уравнений (2): x *=A + b .
  3. Проверяем совместность системы. Для этого вычисляем AA + b . Если AA + b b , то система несовместна. В противном случае продолжаем процедуру.
  4. Высисляем E−A + A.
  5. Делаем скелетное разложение E−A + A=Q·S.
  6. Строим решение

x=x*+Q·k, kR n-r .

Решение системы линейных уравнений онлайн

Онлайн калькулятор позволяет найти обшее решение системы линейных уравнений с подробными объяснениями.

Рассмотрим произвольную систему

Для нахождения общего метода исследования и решения такой системы введем в рассмотрение ее частный случай. Система вида

(16.2)

называется системой в базисной форме.

Неизвестные называются свободными, а - несвободными или базисными неизвестными. Выбор базисных и свободных переменных может быть различным в общем случае.

Система (16.1) имеет решение в том и только том случае, когда ее можно записать в базисной форме.

Перенесем все свободные неизвестные в правые части уравнений системы (16.2). Тогда получим

(16.3)

Если свободным неизвестным придать конкретные числовые значения, то по формулам (16.3) можно вычислить базисные неизвестные. Таким образом, базисная система (16.2) всегда имеет решение. Причем возможны следующие варианты.

1). m =n , то есть число уравнений равно числу неизвестных. В этом случае все переменные базисные. Система имеет вид

и является определенной, так как имеет единственное, очевидное решение. Матрицей такой системы является единичная матрица

.

2). m Тогда система с расширенной матрицей вида

(16.4)

имеет бесконечно много решений, так как при каждом числовом наборе свободных неизвестных базисные неизвестные получают определенные значения по формулам (16.3).

Совокупность n значений неизвестных , связанных соотношениями (16.3), где неизвестные могут принимать любые числовые значения, называется общим решением системы (16.2) или решением в базисной форме . Частным решением называется всякое решение, полученное из общего при конкретных числовых значениях свободных неизвестных.

Вывод: система с базисом всегда совместна. При этом она определенная, если все ее неизвестные базисные, и неопределенная, если кроме базисных есть хотя бы одна свободная неизвестная.

17.Метод Гаусса.

Рассмотрим теперь общий метод исследования и решения систем вида (16.1), который называется методом Гаусса. Он заключается в том, чтобы преобразовать эту систему к равносильной системе с базисом, для которой вопрос о решениях рассмотрен в предыдущем разделе 16.

Метод Гаусса сводится к последовательному исключению неизвестных и основан на применении элементарных преобразований, которые приводят к равносильной системе. К элементарным преобразованиям относятся:

1) обмен местами уравнений в системе;

2) умножение уравнения на постоянное число, отличное от нуля;

3) прибавление к уравнению другого уравнения, умноженного предварительно на произвольное число;

4) отбрасывание или добавление уравнения вида (такое уравнение назовем лишним уравнением).

Уравнение вида , где , назовем противоречивым уравнением. Если в результате элементарных преобразований получилось противоречивое уравнение, то система несовместна.

Для простоты записи вместо всей системы уравнений будем записывать только расширенную матрицу коэффициентов, отделяя вертикальной чертой столбец правых частей

. (17.1)

Элементарные преобразования для равносильных систем порождают допустимые преобразования для матриц. Таким образом, в матрице можно:

1) менять местами строки;

2) умножать любую строку на число, отличное от нуля;

3) прибавлять к строке любую другую строку, умноженную на любое число;

4) отбрасывать нулевую строку , то есть строку коэффициентов лишнего уравнения.

Универсальный метод Гаусса имеет несколько вычислительных схем. Рассмотрим здесь схему единственного деления. Ее идея заключается в том, чтобы с помощью элементарных преобразований привести матрицу (17.1) к виду

(17.2)

или получить противоречивую строку , где , то есть убедиться в том, что система несовместна. Если противоречий не получено, то система совместная и можно искать ее решения. Таким образом, метод состоит из двух этапов.

I-ый этап – так называемый «прямой ход». Его цель – преобразовать матрицу к такому виду, когда на главной диагонали стоят 1, а под главной диагональю – 0. Для этого последовательно выполняем следующие шаги.

1-ый шаг. Назовем элемент в левом верхнем углу матрицы ведущим, а строку, содержащую ведущий элемент, ведущей строкой. Преобразуем матрицу так, чтобы ведущий элемент равнялся 1. Если в левом столбце есть 1, то меняем местами строки. Если нет, то меняем строки так, чтобы ведущий элемент был отличен от нуля, и делим ведущую строку на ведущий элемент. Получаем матрицу

2-ой шаг – размножение нулей в левом столбце под ведущим элементом, равным 1. Для этого к каждой i–той строке прибавляем ведущую строку, предварительно умноженную на первый элемент i–той строки, взятый с противоположным знаком. Например, умножаем первую строку на () и складываем со второй строкой.


Если в ходе этих преобразований получили нулевую строку, то ее следует отбросить. Если получена противоречивая строка, то система решений не имеет. Если противоречий нет, то в результате получим матрицу, в которой, возможно, будет меньше строк, чем в исходной. Она имеет вид:

3-ий шаг – мысленно отделим строку и столбец, содержащие ведущий элемент. В них «прямой ход» завершен. В оставшейся внутри пунктирных линий матрице снова выделим ведущий элемент и повторим всю процедуру, начиная с 1-го шага.

Если новый ведущий элемент и все элементы под ним – нули, то можно поменять местами столбцы всей матрицы так, чтобы новый ведущий элемент был равен 1 или, по крайней мере, был отличен от нуля. Это всегда можно сделать (иначе ведущая строка либо лишняя, либо противоречивая). Однако это приводит к замене переменных, которую следует обязательно пометить в схеме.

Получаем матрицу

, (17.3)

если m, или при m=n

. (17.4)

2-ой этап – «обратный ход». На этом этапе размножают нули над главной диагональю матриц (17.3) или(17.4), продвигаясь вдоль нее в обратном направлении: вверх и влево. При этом получается матрица вида (16.4). Решение системы с такой матрицей рассмотрено в разделе 16.

Несложным оказывается решение систем и с матрицей вида (17.3) или (17.4), которые получаются в результате «прямого хода». Решаем такую систему, начиная с последнего уравнения и подставляя найденные неизвестные в предыдущие уравнения.

Пример 17.1. Решить систему уравнений методом Гаусса:

«Прямой ход»:


«Обратный ход»: полученную расширенную матрицу запишем в виде системы уравнений

Будем решать эту систему, начиная с последнего уравнения. Значение из последнего уравнения системы подставим во второе уравнение: . Получим . Теперь найденные значения переменных подставим в первое уравнение для нахождения . Тогда

Ответ:

Обратный ход можно также записать в матричной форме. Для этого размножают нули над 1, начиная с нижнего правого угла и перемещаясь вдоль главной диагонали вверх.

Вид полученной матрицы позволяет сделать вывод о том, что заданная в этом примере система совместна и определенна.

Приведем теперь пример несовместной системы.

Пример 17.2 : Решить систему

Решение: Выпишем расширенную матрицу этой системы. В левом верхнем ее углу стоит 1. Для размножения нулей под 1 умножим первую строку на -2 и прибавим ко второй строке. Затем умножим первую строку на -3 и прибавим к третьей строке.

Размножив нули в первом столбце, мысленно отбросим первую строку и первый столбец и продолжим прямой ход в матрице, расположенной внутри пунктирной линии. В результате всех преобразований получена противоречивая строка

а следовательно система несовместна и решения не имеет.

Ответ: нет решения.

Следует отметить, что с помощью схемы Гаусса можно решать одновременно нескольких систем с одинаковыми левыми частями и различными правыми. Приведем такой пример.

Пример 17.3 : Решить две системы

Решение. «Прямой ход»:



«Обратный ход»:

Ответ:

18.Нахождение решения в базисной форме.

Схема Гаусса позволяет на первом этапе определить, является ли система совместной. И если система совместна (нет противоречивых строк), то по виду матрицы в конце «прямого хода» можно судить о том, является ли она определенной (квадратная матрица) или неопределенной (число строк меньше, чем число столбцов).

Пример 18.1 Методом Гаусса решить систему и представить ее решение в базисной форме:

Решение. Выпишем расширенную матрицу системы и выполним первый этап схемы Гаусса – «прямой ход».

Прямой ход завершен. Число строк меньше, чем число столбцов, а значит система неопределенная и имеет бесконечное множество решений.

«Обратный ход». Выпишем теперь эквивалентную систему с новой матрицей.

Перенесем слагаемые с переменной в правую часть равенств. Получим

Подставляя значение x из последнего уравнения в предыдущее, получаем

Следовательно, решением системы является совокупность

где -- свободная переменная, а ­­- базисные переменные.

Пример 18.2. Методом Гаусса решить однородную систему и представить ее решение в базисной форме:

Решение: Для однородной системы столбец свободных членов нулевой, поэтому выписывают не расширенную, а обычную матрицу системы.

«Прямой ход»:

«Обратный ход»:

где - свободная переменная, - базисные переменные.

Сделаем здесь проверку, то есть подставим найденное решение в исходную систему. Тогда имеем:

§19. Вычисление обратной матрицы по схеме Гаусса.

Пусть - неособенная квадратная матрица. Тогда для нее существует обратная матрица . Обозначим через столбец номер обратной матрицы . По определению

Отсюда, для нахождения -того столбца обратной матрицы необходимо решить систему

(19.1)

Для нахождения всей матрицы необходимо решить n систем вида (19.1) с одинаковыми левыми частями и различными правыми, состоящими из нулей и одной 1 в -ой строке.

Таким образом, расширенная матрица имеет вид:

Пример 19.1. Методом Гаусса найти матрицу, обратную матрице . Используя найденную обратную матрицу, решить систему

Решение. Составим расширенную матрицу и выполним «прямой ход».