Принцип относительности. Постулаты теории относительности

После создания электродинамики возникли сомнения в справедливости принципа относительности Галилея применительно к электромагнитным явлениям.

После того как во второй половине XIX в. Максвеллом были сформулированы основные законы электродинамики, возник вопрос, распространяется ли принцип относительности, справедливый для механических явлений, и на электромагнитные явления. Иными словами, протекают ли электромагнитные процессы (взаимодействие зарядов и токов, распространение электромагнитных волн и т. д.) одинаково во всех инерциальных системах отсчета? Или, быть может, равномерное прямолинейное движение, не влияя на механические явления, оказывает некоторое воздействие на электромагнитные процессы?

Чтобы ответить на этот вопрос, нужно было выяснить, меняются ли основные законы электродинамики (уравнения Максвелла) при переходе от одной инерциальной системы к другой, или же, подобно законам Ньютона, они остаются неизменными. Только в последнем случае можно отбросить сомнения в справедливости принципа относительности применительно к электромагнитным процессам и рассматривать этот принцип как общий закон природы.

Значения координат и времени в двух инерциальных системах отсчета связаны друг с другом преобразованиями Галилея. Преобразования Галилея выражают классические представления о пространстве и времени. Уравнения Ньютона инвариантны относительно преобразований Галилея, и этот факт как раз и выражает принцип относительности в механике.

Законы электродинамики сложны, и выяснить, инвариантны эти законы относительно преобразований Галилея или нет, - нелегкое дело. Однако уже простые соображения позволяют найти ответ. В электродинамике Максвелла скорость распространения электромагнитных волн в вакууме одинакова по всем направлениям и равна с = 3⋅10 10 см/с. Но, с другой стороны, в соответствии с законом сложения скоростей, вытекающим из преобразований Галилея, скорость может равняться с только в одной избранной системе отсчета. В любой другой системе отсчета, движущейся по отношению к этой избранной системе со скоростью \(\vec{\upsilon },\) скорость света должна равняться \(\vec{c}-\vec{\upsilon }\). Это означает, что если справедлив обычный закон сложения скоростей, то при переходе от одной инерциальной системы к другой законы электродинамики должны меняться так, чтобы в этой новой системе отсчета скорость света равнялась не \(\vec{c}\), а \(\vec{c}-\vec{\upsilon }.\)

Таким образом, обнаружились определенные противоречия между электродинамикой и механикой Ньютона, законы которой согласуются с принципом относительности. Возникшие трудности можно было попытаться преодолеть тремя различными способами.

Первая возможность состояла в том, чтобы объявить несостоятельным принцип относительности в применении к электромагнитным явлениям. На эту точку зрения стал великий голландский физик, основатель электронной теории X. Лоренц. Электромагнитные явления еще со времен Фарадея рассматривались как процессы в особой, всепроникающей среде, заполняющей все пространство, - «мировом эфире». Инерциальная система отсчета, покоящаяся относительно эфира, - это, согласно Лоренцу, особая преимущественная система. В ней законы электродинамики Максвелла справедливы и имеют наиболее простую форму. Лишь в этой системе отсчета скорость света в вакууме одинакова по всем направлениям.

Вторая возможность состоит в том, чтобы считать неправильными сами уравнения Максвелла и пытаться изменить их таким образом, чтобы они при переходе от одной инерциальной системы к другой (в соответствии с обычными, классическими представлениями о пространстве и времени) не менялись. Такая попытка, в частности, была предпринята Г. Герцем. По Герцу, эфир полностью увлекается движущимися телами, и поэтому электромагнитные явления, разыгрывающиеся в эфире, протекают одинаково, независимо от того, покоится тело или движется. Принцип относительности справедлив.

Наконец, третья возможность разрешения указанных трудностей состоит в отказе от классических представлений о пространстве и времени, с тем чтобы сохранить как принцип относительности, так и уравнения Максвелла. Это наиболее революционный путь, ибо он означает пересмотр самых глубоких, самых основных представлений в физике. С данной точки зрения оказываются неточными не уравнения электромагнитного поля, а законы механики Ньютона, согласующиеся со старыми представлениями о пространстве и времени, выражаемыми преобразованиями Галилея. Изменять нужно законы механики, а не законы электродинамики Максвелла.

Единственно правильной оказалась именно третья возможность. Последовательно развивая ее, Эйнштейн пришел к новым представлениям о пространстве и времени. Первые два пути, как оказалось, опровергаются экспериментом.

При попытках Герца изменить законы электродинамики Максвелла выяснилось, что новые уравнения не способны объяснить ряд наблюдаемых фактов. Так, согласно теории Герца, движущаяся вода должна полностью увлекать за собой распространяющийся в ней свет, так как она увлекает эфир, в котором свет распространяется. Опыт же показал, что в действительности это не так.

Точка зрения Лоренца, согласно которой должна существовать избранная система отсчета, связанная с мировым эфиром, пребывающим в абсолютном покое, также была опровергнута прямыми опытами.

Литература

Мякишев Г.Я. Физика: Оптика. Квантовая физика. 11 кл.: Учеб. для углубленного изучения физики. - М.: Дрофа, 2002. - С. 189-191.

«Физика - 11 класс»

Законы электродинамики и принцип относительности

Согласно классическим представлениям о пространстве и времени, считавшимся на протяжении веков незыблемыми, движение не оказывает никакого влияния на течение времени (время абсолютно), а линейные размеры любого тела не зависят от того, покоится тело или движется (длина абсолютна).

Специальная теория относительности Эйнштейна - это новое учение о пространстве и времени, пришедшее на смену старым (классическим) представлениям.


Принцип относительности в механике и электродинамике


После того как во второй половине XIX в. Максвеллом были сформулированы основные законы электродинамики, возник вопрос: распространяется ли принцип относительности, справедливый для механических явлений, и на электромагнитные явления? Иными словами, протекают ли электромагнитные процессы (взаимодействие зарядов и токов, распространение электромагнитных волн и т. д.) одинаково во всех инерциальных системах отсчета? Или, быть может, равномерное прямолинейное движение, не влияя на механические явления, оказывает некоторое воздействие на электромагнитные процессы?

Чтобы ответить на эти вопросы, нужно было выяснить, меняются ли основные законы электродинамики при переходе от одной инерциальной системы отсчета к другой, или же, подобно законам Ньютона, они остаются неизменными. Только в последнем случае можно отбросить сомнения в справедливости принципа относительности применительно к электромагнитным процессам и рассматривать этот принцип как общий закон природы.

Законы электродинамики сложны, и строгое решение этой задачи - нелегкое дело. Однако уже простые соображения, казалось бы, позволяют найти правильный ответ. Согласно законам электродинамики скорость распространения электромагнитных волн в вакууме одинакова по всем направлениям и равна с = 3 10 8 м/с . Но в соответствии с законом сложения скоростей механики Ньютона скорость может быть равна скорости света только в одной избранной системе отсчета. В любой другой системе отсчета, движущейся по отношению к этой избранной системе отсчета со скоростью , скорость света должна уже быть равна - . Это означает, что если справедлив обычный закон сложения скоростей, то при переходе от одной инерциальной системы отсчета к другой законы электродинамики должны меняться так чтобы в этой новой системе отсчета скорость света уже была равна не , а - .

Таким образом, обнаружились определенные противоречия между электродинамикой и механикой Ньютона, законы которой согласуются с принципом относительности. Возникшие трудности пытались преодолеть тремя различными способами.

Первый способ:
объявить несостоятельным принцип относительности в применении к электромагнитным явлениям. Эту точку зрения разделял великий голландский физик, основатель электронной теории X. Лоренц. Электромагнитные явления еще со времен Фарадея рассматривались как процессы, происходящие в особой, всепроникающей среде, заполняющей все пространство, - мировом эфире. Инерциальная система отсчета, покоящаяся относительно эфира, - это согласно Лоренцу особая, преимущественная система отсчета. В ней законы электродинамики Максвелла справедливы и наиболее просты по форме. Лишь в этой системе отсчета скорость света в вакууме одинакова по всем направлениям.

Второй способ:
считать неправильными уравнения Максвелла и пытаться изменить их таким образом, чтобы они при переходе от одной инерциальной системы отсчета к другой (в соответствии с обычными, классическими представлениями о пространстве и времени) не менялись. Такая попытка, в частности, была предпринята Г. Герцем. По Герцу, эфир полностью увлекается движущимися телами и поэтому электромагнитные явления протекают одинаково независимо от того, покоится тело или движется. Принцип относительности остается справедливым.

Третий способ:
отказаться от классических представлений о пространстве и времени, с тем чтобы сохранить как принцип относительности, так и законы Максвелла. Это наиболее революционный путь, ибо он означает пересмотр в физике самых глубоких, основных представлений. С данной точки зрения оказываются неточными не уравнения электромагнитного поля, а законы механики Ньютона, согласующиеся со старыми представлениями о пространстве и времени. Изменять нужно законы механики, а не законы электродинамики Максвелла.

равильным оказался именно третий способ. Последовательно развивая его, А. Эйнштейн пришел к новым представлениям о пространстве и времени. Первые два пути, как оказалось, опровергаются экспериментом.

Точка зрения Лоренца, согласно которой должна существовать избранная система отсчета, связанная с мировым эфиром, пребывающим в абсолютном покое, была опровергнута прямыми опытами.

Если бы скорость света была равна 300 000 км/с только в системе отсчета, связанной с эфиром, то, измеряя скорость света в произвольной инерциальной системе отсчета, можно было бы обнаружить движение этой системы отсчета по отношению к эфиру и определить скорость этого движения. Подобно тому как в системе отсчета, движущейся относительно воздуха, возникает ветер, при движении по отношению к эфиру (если, конечно, эфир существует) должен быть обнаружен «эфирный ветер». Опыт по обнаружению «эфирного ветра» был поставлен в 1881 г. американскими учеными А. Майкельсоном и Э. Мор л и по идее, высказанной за 12 лет до этого Максвеллом.

В этом опыте сравнивалась скорость света в направлении движения Земли и в перпендикулярном направлении. Измерения проводились очень точно с помощью специального прибора - интерферометра Майкельсона. Эксперименты ставились в разное время суток и различные времена года. Но всегда получался отрицательный результат: движения Земли по отношению к эфиру обнаружить не удалось.

Таким образом, идея о существовании преимущественной системы отсчета не выдержала опытной проверки. В свою очередь, это означало, что никакой особой среды - «светоносного эфира», с которой можно было бы связать такую преимущественную систему отсчета, не существует.

При попытках Герца изменить законы электродинамики Максвелла выяснилось, что новые уравнения неспособны объяснить ряд наблюдаемых фактов. Так, согласно теории Герца движущаяся вода должна полностью увлекать за собой распространяющийся в ней свет, так как она увлекает эфир, в котором свет распространяется. Опыт же показал, что в действительности это не так

Итак,
согласовать принцип относительности с электродинамикой Максвелла оказалось возможным, только отказавшись от классических представлений о пространстве и времени, согласно которым расстояния и течение времени не зависят от системы отсчета.

Постулаты теории относительности

В основе теории относительности лежат два постулата.

А что такое постулат?

Постулат в физической теории выполняет ту же роль, что и аксиома в математике.
Это - основное положение, которое не может быть логически доказано.
В физике постулат есть результат обобщения опытных фактов.

1.
Все процессы в природе протекают одинаково во всех инерциальных системах отсчета.

Это означает, что во всех инерциальных системах отсчета физические законы имеют одинаковую форму.
Таким образом, принцип относительности классической механики распространяется на все процессы в природе, в том числе и на электромагнитные.

2.
Скорость света в вакууме одинакова во всех инерциальных системах отсчета и не зависит ни от скорости источника, ни от скорости приемника светового сигнала.

Скорость света занимает, таким образом, особое положение.
Более того, как вытекает из постулатов теории относительности, скорость света в вакууме является максимально возможной скоростью передачи взаимодействий в природе.

Для того чтобы сформулировать постулаты теории относительности, нужна была большая научная смелость, так как они противоречили классическим представлениям о пространстве и времени.

В самом деле, допустим, что в момент времени, когда начала координат инерциальных систем отсчета К и К 1 , движущихся относительно друг друга со скоростью , совпадают, в начале координат происходит кратковременная вспышка света.
За время t системы отсчета сместятся относительно друг друга на расстояние υt , а сферическая волновая поверхность будет иметь радиус υt .
Системы отсчета К и К 1 равноправны, и скорость света одинакова в той и другой системе отсчета.

Следовательно, с точки зрения наблюдателя, связанного с системой отсчета К , центр сферы будет находиться в точке О , а с точки зрения наблюдателя, связанного с системой отсчета К 1 , - в точке О 1 .

Но ведь не может одна и та же сферическая поверхность иметь центры в точках О и O 1 .
Это явное противоречие вытекает из рассуждений, основанных на постулатах теории относительности.

Итак,
имеется противоречие с классическими представлениями о пространстве и времени, которые при больших скоростях движения несправедливы.
Однако сама теория относительности не содержит противоречий и является абсолютно логичной.

Реферат по предмету Концепции Современного Естествознания

Теория относительности

Развитие электродинамики привело к пересмотру представлений о пространстве и времени. Согласно классическим представлениям о пространстве и времени, считавшимся на протяжении веков незыблемыми, движение не оказывает никакого влияния на течение времени (время абсолютно), а линейные размеры любого тела не зависят от того, покоится ли тело или движется (длина абсолютна).

Специальная теория относительности Эйнштейна – это новое учение о пространстве и времени, пришедшее на смену старым (классическим) представлениям.

Законы электродинамики и принцип относительности

После создания электродинамики возникли сомнения в справедливости принципа относительности Галилея применительно к электромагнитным явлениям.

Принцип относительности в механике и электродинамике . После того как во второй половине XIX века Максвеллом были сформулированы основные законы электродинамики, возник вопрос, распространяется ли принцип относительности, и на электромагнитные явления. Иными словами, протекают ли электромагнитные процессы (взаимодействие зарядов и токов, распространение электромагнитных волн и т.д.) одинаково во всех инерциальных системах отсчета? Или, может быть, равномерное прямолинейное движение, не влияя на механические явления, оказывает некоторое воздействие на электромагнитные процессы?

Чтобы ответить на этот вопрос, нужно было выяснить, меняются ли основные законы электродинамики при переходе от одной инерциальной системы к другой или же подобно законам Ньютона они остаются неизменными. Только в последнем случае можно отбросить сомнения в справедливости принципа относительности применительно к электромагнитным процессам и рассматривать этот принцип как общий закон природы.

Законы электродинамики сложны, и строгое решение этой задачи – нелегкое дело. Однако уже простые соображения, казалось бы, позволяют найти правильный ответ. Согласно законам электродинамики скорость распространения электромагнитных волн в вакууме одинакова по всем направлениям и равна: c = 3 · 10 8 м/с. Но, с другой стороны, в соответствии с законом сложения скоростей механики Ньютона скорость может равняться c только в одной избранной системе отсчета. В любой другой системе отсчета, движущейся по отношению к этой избранной системе со скоростью v , скорость света должна уже равняться c v . Это означает, что если справедлив обычный закон сложения скоростей, то при переходе от одной инерциальной системы к другой законы электродинамики должны меняться так, чтобы в этой новой системе отсчета скорость света уже равнялась не с , а c v .

Таким образом, обнаружились определенные противоречия между электродинамикой и механикой Ньютона, законы которой согласуются с принципом относительности. Возникшие трудности пытались преодолеть тремя различными способами.

Первая возможность состояла в том, чтобы объявить несостоятельным принцип относительности в применении к электромагнитными явлениям. Эту позицию отстаивал великий голландский физик, основатель электронной теории Х. Лоренц. Электромагнитные явления еще со времен Фарадея рассматривались как процессы в особой, всепроникающей среде, заполнявшей все пространство, ─ «мировом эфире». Инерциальная система отсчета, покоящаяся относительно эфира, ─ это согласно Лоренцу особая преимущественная система. В ней законы электродинамики Максвелла справедливы и имеют наиболее простую форму. Лишь в этой системе отсчета скорость света в вакууме одинакова по всем направлениям.

Вторая возможность состоит в том, чтобы считать неправильными уравнения Максвелла и пытаться изменить их таким образом, чтобы они при переходе от одной инерциальной системы к другой (в соответствии с обычными, классическими представлениями о пространстве и времени) не менялись. Такая попытка, в частности, была предпринята Г. Герцем. По Герцу, эфир полностью увлекается движущимися телами, и поэтому электромагнитные явления протекают одинаково, независимо от того, покоится тело или движется. Принцип относительности справедлив.

Наконец, третья возможность разрешения указанных трудностей состоит в отказе от классических представлений о пространстве и времени, с тем чтобы сохранить как принцип относительности, так и законы Максвелла. Это наиболее революционный путь, ибо он означает пересмотр в физике самых глубоких, самых основных представлений. С данной точки зрения оказываются неточными не уравнения электромагнитного поля, а законы механики Ньютона, согласующиеся со старыми представлениями о пространстве и времени. Изменять нужно законы механики, а не законы электродинамики Максвелла.

Единственно правильной оказалась именно третья возможность. Последовательно развивая её, А. Эйнштейн пришел к новым представлениям о пространстве и времени. Первые два пути, как оказалось, опровергаются экспериментом.

При попытках Герца изменить законы электродинамики Максвелла выяснилось, что новые уравнения не способны объяснить ряд наблюдаемых фактов. Так, согласно теории Герца движущаяся вода должна полностью увлекать за собой распространяющийся в ней свет, т.к. она увлекает эфир, в котором свет распространяется. Опыт же показал, что в действительности это не так.

Точка зрения Лоренца, согласно которой должна существовать избранная система отсчета, связанная с мировым эфиром, пребывающим в абсолютном покое, также была опровергнута прямыми опытами.

Если бы скорость света была равна 300 000 км/с только в системе отсчета, связанной с эфиром, то, измеряя скорость света в произвольной инерциальной системе, можно было бы обнаружить движение этой системы по отношению к эфиру и определить скорость этого движения. Подобно тому как в системе отсчета, движущейся относительно воздуха, возникает ветер, при движении по отношению к эфиру (если, конечно, эфир существует) должен быть обнаружен «эфирный ветер». Опыт по обнаружению «эфирного ветра» был поставлен в 1881 г. американскими учеными А. Майкельсоном и Э. Морли по идее, высказанной за 12 лет до этого Максвеллом.

В этом опыте сравнивалась скорость света в направлении движения Земли и в перпендикулярном направлении. Измерения проводились очень точно с помощью специального прибора – интерферометра Майкельсона. Эксперименты ставились в разное время суток и различные времена года. Но всегда получался отрицательный результат: движения Земли по отношению к эфиру обнаружить не удалось.

Таким образом, идея о существовании преимущественной системы отсчета не выдержала опытной проверки. В свою очередь это означало, что никакой особой среды – «светоносного эфира», – с которой можно было бы связать такую преимущественную систему отсчета, не существует.

Согласовать принцип относительности с электродинамикой Максвелла оказалось возможным, только отказавшись от классических представлений о пространстве и времени, согласно которым расстояния и течение времени не зависят от системы отсчета.

Постулаты теории относительности

В основе теории относительности лежат два постулата.

Для объяснения отрицательных результатов опыта Майкельсона и других оптов, которые должны были обнаружить движение Земли относительно эфира, вводились различные гипотезы. С помощью этих гипотез пытались объяснить, почему не удается обнаружить преимущественную систему отсчета (считали, что такая система в действительности якобы имеется).

Совсем по-иному подошел к проблеме Эйнштейн: не стоит изобретать различные гипотезы для объяснения отрицательных результатов всех попыток обнаружить различие между инерциальными системами. Законом природы является полное равноправие всех инерциальных систем отсчета в отношении не только механических, но и электромагнитных процессов. Нет никакого различия между состоянием покоя и равномерного прямолинейного движения.

Принцип относительности – главный постулат теории Эйнштейна. Его можно сформулировать так: все процессы природы протекают одинаково во всех инерциальных системах отсчета.

Это означает, что во всех инерциальных системах физические законы имеют одинаковую форму. Таким образом, принцип относительности классической механики обобщается на все процессы в природа, в том числе и на электромагнитные. Но теория относительности основывается не только на принципе относительности. Имеются еще второй постулат: скорость света в вакууме одинакова для всех инерциальных систем отсчета. Она не зависит ни от скорости источника, ни от скорости приемника светового сигнала.

Скорость света занимает, таким образом, особое положение. Более того, как вытекает из постулатов теории относительности, скорость света в вакууме является максимально возможной скоростью передачи взаимодействия в природе.

Для того, чтобы решиться сформулировать постулаты теории относительности, нужна была большая научная мысль, т.к. они противоречили классическим представлениям о пространстве и времени.

В самом деле, допустим, что в момент времени, когда начала координат инерциальных систем отсчета К и К 1 , движущихся друг относительно друга со скоростью v , совпадают, в начале координат происходит кратковременная вспышка света. За время t системы сместятся друг относительно друга на расстояние vt , а сферическая волновая поверхность будет иметь радиус ct :

Системы К и К 1 равноправны, и скорость света одинакова в той и другой системе. Следовательно, с точки зрения наблюдателя, связанного с системой отсчета К , центр сферы будет находиться в точке О, а с точки зрения наблюдателя, связанного с системой отсчета К 1 , он будет находиться в точке О 1 . Но ведь не может одна и та же сферическая поверхность иметь центры О и О 1 . Это явное противоречие вытекает из рассуждений, основанных на постулатах теории относительности.

Противоречие здесь действительно есть. Но не внутри самой теории относительности. Имеется лишь

противоречие с классическими представлениями о пространстве и времени, которые при больших скоростях уже несправедливы.

Относительность одновременности

До начала XX века никто не сомневался, что время абсолютно. Два события, одновременные для жителей Земли, одновременны для жителей любой космической цивилизации. Создание теории относительности показало, что это не так.

Причиной несостоятельности классических представлений о пространстве и времени является неправильное предположение о возможности мгновенной передачи взаимодействий и сигналов из одной точки пространства в другую. Существование предельной конечной скорости передачи взаимодействий вызывает необходимость глубокого изменения обычных представлений о пространстве и времени, основанных на повседневном опыте. Представление об абсолютном времени, которое течет раз и навсегда заданным темпом, совершенно независимо от материи и её движения, оказывается неправильным.

Если допустить мгновенное распространение сигналов, то утверждение, что события в двух пространственно разделенных точках А и В произошли одновременно, будет иметь абсолютный смысл. Можно поместить в точки А и В часы и синхронизировать их с помощью мгновенных сигналов. Если такой сигнал отправлен из А , например, в 0 ч 45 мин и он в этот же момент времени по часам В пришел в точку В, то, значит, часы показывают одинаковое время, т.е. идут синхронно. Если же такого совпадения нет, то часы можно синхронизировать, подведя вперед те часы, которые показывают меньшее время в момент отправления сигнала.

Любые события, например, два удара молнии, одновременны, если они происходят при одинаковых показаниях синхронизированных часов.

Только располагая в точках А и В синхронизированными часами, можно судить о том, произошли ли два каких-либо события в этих точках одновременно или нет. Но как можно синхронизировать часы, находящиеся на некотором расстоянии друг от друга, если скорость распространения сигналов не бесконечно велика?

Для синхронизации часов естественно прибегнуть к световым или вообще электромагнитным сигналом, т.к. скорость электромагнитных волн в вакууме является строго определенной, постоянной величиной.

Рассмотрим подробнее простой метод синхронизации часов, не требующий никаких вычислений. Допустим, что космонавт хочет узнать, одинаково ли идут часы А и В , установленные на противоположных концах космического корабля.

движется, положение иное. Часы на носу корабля удаляются от того места, где произошла вспышка света источника (точка с координатой ОС ), и, чтобы достигнуть часов А , свет должен преодолеть расстояние, большее половины длины корабля.

Напротив, часы В на корме приближаются к месту вспышки, и путь светового сигнала меньше половины длины корабля (на рисунках слева показано, как, в первом случае, координаты х и х 1 совпадают в момент вспышки, потом, как свет достигает часов В ). Поэтому наблюдатель в системе К приходит к выводу, что сигналы достигают часов неодновременно.

Два любых события в точках А и В , одновременные в системе К 1 , неодновременны в системе К. Но в системе принципа относительности системы К 1 и К совершенно равноправны. Ни одной из этих систем нельзя отдать предпочтение. Поэтому мы вынуждены прийти к заключению, что одновременность пространственно разделенных событий относительна . Причиной относительности одновременности является, как мы видим, конечность скорости распространения сигналов.

Одновременность событий относительна. Представить себе это наглядно, «почувствовать», мы не в состоянии из-за того, что скорость света много больше тех скоростей, с которыми движемся мы.

Основные следствия, вытекающие из постулатов теории относительности.

Из постулатов теории относительности вытекает ряд важнейших следствий, касающихся свойств пространства и времени.

Относительность расстояний . Расстояние не является абсолютной величиной, а зависит от скорости движения тела относительно данной системы отсчета.

Обозначим через l o длину стержня с системе отсчета К , относительно которой стержень покоится. Тогда длина l этого стержня в системе отсчета К 1 , относительно которой стержень движется со скоростью определяется формулой:

Как видно из этой формулы, l l 0 . В этом состоит релятивистское сокращение размеров тела в движущихся системах отсчета (релятивистскими называются эффекты, наблюдаемые при скоростях движения, близких к скорости света).

Относительность промежутков времени . Пусть интервал времени между двумя событиями, происходящими в одной и той же точке инерциальной системы К , равен τ 0 . Этими событиями, например, могут быть два удара метронома, отсчитывающего секунды.

Тогда интервал τ между этими же событиями в системе отсчета К 1, движущейся относительно системы К выражается так:

Очевидно, что τ > τ o . В этом состоит релятивистский эффект замедления времени в движущихся системах отсчета.

Если v c , то в формулах можно пренебречь величиной v 2 / c 2 . Тогда l lo и τ τ o , т.е. релятивистское сокращение размеров тел и замедление вреиени в движущейся системе отсчета можно не учитывать.

Релятивистский закон сложения скоростей . Новым релятивистским представлениям о пространстве и времени соответствует новый закон сложения скоростей. Очевидно, что классический закон сложения скоростей не может быть справедлив, так как он противоречит утверждению о постоянстве скорости света в вакууме.

Если поезд движется со скоростью v и в вагоне в направлении движения поезда распространяется световая волна, то ее скорость относительно Земли должна равняться опять-таки с , а не v + c . Новый закон сложения скоростей и должен приводить к требуемому результату.

Запишем закон сложения скоростей для частного случая, когда тело движется вдоль оси Х 1 системы отсчета К 1 , которая в свою очередь движется со скоростью v относительно системы отсчета К . Причем в процессе движения координатные оси Х и Х 1 все время совпадают, а координатные оси Y и Y 1 , Z и Z 1 и и остаются параллельными.

Обозначим скорость тела относительно К 1 через v 1 , а скорость этого же тела относительно К через v . Тогда релятивистский закон сложения скоростей будет иметь вид

Если и, то дробью в знаменателе можно пренебречь, и вместо этой фигни слева мы получим классический закон сложения скоростей: v 2 = v 1 +v . При v 1 =c скорость v 2 также равна c , как этого требует второй постулат теории относительности. Действительно,

Замечательным свойством релятивистского закона сложения скоростей является то, что при любых скоростях v электродинамики и принцип относительности . Постулаты специальной теории относитель­ности...

  • Рабочая программа среднего (полного) общего образования по физике Учителя физики

    Рабочая программа

    Часть 2: электродинамика , электромагнитные колебания и волны, оптика. Основы специальной теории относительности , квантовая физика... Р. № 1104, 1105 59/18 Законы электродинамики и принцип относительности . Постулаты теории относительности . § 75, 76 60/19 ...

  • Рабочая программа учебного предмета муниципального образовательного учреждения средней общеобразовательной школы с. Березняк

    Рабочая программа

    ТЕОРИИ ОТНОСИТЕЛЬНОСТИ (3 часа) 32 Законы электродинамики и принцип относительности . Постулаты теории относительности 1 Комбинированный урок Постулаты теории относительности Эйнштейна...

  • Учебники для 10 и 11 класса

    Учебники

    Относитель- ности 5 ч 1. Законы электродинамики и принцип относительности . 75/2 2. Постулаты теории относительности . Релятивистский закон сложения скоростей...

  • Развитие электродинамики привело к новым представлениям о пространстве и времени. Согласно классическим представлениям о пространстве и времени, считавшимся на протяжении веков незыблемыми, движение не оказывает никакого влияния на течение времени (время абсолютно), а линейные размеры любого тела не зависят от того, покоится ли тело или движется (длина абсолютна). На смену старым, классическим представлениям о пространстве и времени пришло новое учение - специальная теория относительности Эйнштейна.
    После того как во второй половине 19 века Максвеллом были сформулированы основные законы электродинамики, ученые осознали, что принцип относительности Галилея сложно применить к электромагнитным явлениям. Возник вопрос: протекают ли электромагнитные процессы (взаимодействие зарядов и токов, распространение электромагнитных волн и так далее) одинаково во всех инерциальных системах отсчета? Чтобы ответить на этот вопрос, надо выяснить, меняются ли основные законы электродинамики при переходе от одной инерциальной системы к другой или же подобно законам Ньютона они остаются неизменными. Законы электродинамики сложны. Согласно им скорость распространения электромагнитных волн в вакууме одинакова по всем направлениям и равна 300 млн метров в секунду. Но, с другой стороны, согласно законам механики Ньютона, эта скорость может равняться 300 миллионам только в одной избранной системе отсчета. В любой другой системе отсчета, движущейся по отношению к первой системе с некоторой другой скоростью, скорость света должна уже равняться разности этих скоростей. Значит, если справедлив обычный закон сложения скоростей, то при переходе от одной инерциальной системы к другой, законы электродинамики должны меняться также как и законы механики. Мы обнаружили определенные противоречия между электродинамикой и механикой.
    Обнаружились определенные противоречия между электродинамикой и механикой Ньютона, законы которой согласуются с принципом относительности. Первая возможность состояла в том, чтобы объявить несостоятельным принцип относительности в применении к электромагнитным явлениям. Эту точку зрения разделял великий голландский физик, основатель электронной теории Х. Лоренц. Согласно этой теории инерциальная система отсчета, покоящаяся относительно эфира, - это особая, преимущественная система, так как электромагнитные явления еще со времени Фарадея рассматривались как процессы в особой, всепроникающей среде, заполняющей все пространство - «мировом эфире». Если бы скорость света была равна 300 000 км в секунду только в системе отсчета в некоторой инерциальной системе, тогда можно было бы обнаружить, как движется эта система по отношению к эфиру. Подобно тому, как в системе отсчета, движущейся относительно воздуха, возникает ветер, так и при движении по отношению к эфиру некоторой системы должен быть обнаружен «эфирный ветер». Если, конечно, эфир существует. Вторая возможность состоит в том, чтобы считать неправильными уравнения Максвелла и пытаться изменить их таким образом, чтобы они при переходе от одной инерциальной системы к другой (в соответствии с обычными, классическими представлениями о пространстве и времени) не менялись. Опыт по обнаружению «эфирного ветра» был поставлен в 1881 году американскими ученными А. Майкельсоном и Э. Морли. Эту идею за 12 лет до этого высказал Максвелл. Заключалась она в наблюдении смещения интерференционных полос и измерении разности задержек света при его распространении вдоль и поперёк движения Земли по орбите. Такая попытка еще раньше была предпринята Генрихом Герцем. По его предположению эфир полностью увлекается движущимися телами, и поэтому электромагнитные явления протекают одинаково, независимого от того, покоится тело или движется. Здесь принцип относительности справедлив. К примеру, согласно теории Герца, когда вода движется, она полностью увлекает за собой распространяющийся в ней свет, так как она увлекает эфир, в котором свет распространяется. Опыт же показал, что в действительности это не так. Третья возможность разрешения указанных трудностей состоит в отказе от классических представлений о пространстве и времени. При этом можно сохранить как принцип относительности, так и законы Максвелла. С данной точки зрения оказывается, что изменять нужно законы механики, а не законы электродинамики Максвелла. Единственно правильной оказалась именно третья возможность. Последовательно развивая именно эту теорию, Альберт Эйнштейн пришел к новым представлениям о пространстве и времени. Он создал новое учение о пространстве и времени, которое сегодня называют специальной теорией относительности. Обобщая свою теорию для неинерциальных систем отсчета, Эйнштейн построил общую теорию относительности. Она представляет собой современную теорию тяготения. Эйнштейн впервые ввел представление о частицах света, их называют фотонами. В своих опытах он сравнивал скорости света в направлении движения Земли и в перпендикулярном направлении. Измерения Эйнштейн проводил очень точно с помощью специального прибора интерферометра, разработанного Майкельсоном
    и ныне носящим его имя. Эксперименты ставились в разное время суток и различные времена года. При этом движение Земли по отношению к эфиру обнаружить не удалось. Все это было похоже на то, как если бы вы, высунув голову из окна машины, при скорости 100 км/ч не заметили бы встречного ветра. Таким образом, идея о существовании преимущественной системы отсчета не выдержала опытной проверки. В свою очередь это означало, что никакой особой среды - «светоносного эфира», - с которой можно было бы связать такую преимущественную систему отсчета, не существует. Теперь легко можно согласовать принцип относительности с электродинамикой Максвелла. Для этого нужно отказаться от классических представлений о пространстве и времени, согласно которым расстояния и течение времени не зависят от системы отсчета.
    В основе рассматриваемой нами теории относительности лежат два постулата. Принцип относительности - первый и главный постулат теории Эйнштейна. Его можно сформулировать так: все процессы природы протекают одинаково во всех инерциальных системах отсчета. Это означает, что во всех инерциальных системах физические законы имеют одинаковую форму. Второй постулат: скорость света в вакууме одинакова для всех инерциальных систем отсчета. Скорость света занимает особое положение. Как вытекает из постулатов теории относительности, скорость света в вакууме является максимально возможной скоростью передачи взаимодействий в природе. В относительности одновременности кроется решение парадокса со сферическими световыми сигналами Опишем ситуацию. Свет одновременно достигает точек сферической поверхности с центром в точке О только с точки зрения наблюдателя, находящегося в покое относительно системы К (ка). С точки зрения же наблюдателя, связанного с системой К1 (ка-1), свет достигает этих точек в разные моменты времени. Разумеется, справедливо и обратное: в системе К (ка) свет достигает точек поверхности сферы с центром в О1 (о-1) в различные моменты времени, а не одновременно, как это представляется наблюдателю в системе К1 (ка-1). Отсюда следует вывод, что никакого парадокса в действительности нет. До начала 20 века никто не сомневался, что время абсолютно. То есть, когда два события, одновременные для жителей Земли, одновременны для жителей любой космической цивилизации. Создание теории относительности показало, что это не так. Представление об абсолютном времени, которое течет раз и навсегда заданным темпом, совершенно независимо от структуры материи и ее движения, оказывается неправильным. «Минута — величина относительная: если у вас свидание с симпатичной девушкой, то она пролетит как мгновение, а если вы сидите на раскаленной плите, то она покажется вечностью». Так сам Эйнштейн пытался объяснить простыми словами свою теорию относительности. Действительно, если допустить мгновенное распространение сигналов, то утверждение, что события в двух пространственно разделенных точках А и В произошли одновременно, будет иметь абсолютный смысл. Любые события, например два удара молнии, одновременны, если они происходят при одинаковых показаниях синхронизированных часов. Только располагая в точках А и В синхронизированными часами, можно судить о том произошли ли два каких-либо события в этих точках одновременно или нет. Для синхронизации часов правильнее будет, если прибегнут к световым или вообще электромагнитным сигналам, так как скорость электромагнитных волн в вакууме является строго определенной, постоянной причиной. Именно такой способ используют при проверки часов по радио. Рассмотрим подробнее один из простых методов синхронизации часов, не требующий никаких вычислений. Допустим, что космонавт хочет узнать одинаково ли идут установленные на противоположных концах космического корабля часы А и В (бэ). Для этого, с помощью источника, который расположен в середине корабля и неподвижен относительно него, космонавт производит вспышку света. Свет одновременно достигает обоих часов. Если показания часов в этот момент одинаковы, то часы идут синхронно. Но так будет лишь относительно системы отсчета, связанной с кораблем. В системе же отсчета, относительно которой корабль движется, положение иное. Часы на носу корабля будут удаляться от того места, где произошла вспышка света источника, и, чтобы достигнуть часов А, свет должен преодолеть расстояние, большее половины длины корабля. А часы (бэ) на корме приближаются к месту вспышки, и путь светового сигнала меньше половины длины корабля. Поэтому наблюдатель, находящийся в системе, связанной с кораблем, придет к выводу о том, что сигналы достигают обеих часов одновременно. Два любых события в точках А и В (бэ) одновременны в системе отсчета, связанной с кораблем, и не одновременны в системе, относительно которой корабль движется. Но в силу принципа относительности эти системы совершенно равноправны. Ни одной из этих систем нельзя отдать предпочтение. Поэтому мы должны прийти к заключению о том, что одновременность пространственно разделенных событий относительна. Причиной относительности одновременности является, как мы видим, конечность скорости распространения звуковых сигналов. Из постулатов теории относительности вытекает ряд важнейших следствий, касающихся свойств пространства и времени. Наблюдается два релятивистских эффекта. Первое, в движущихся системах отсчета размеры тела сокращаются. Второе, в движущейся системе отсчета наблюдается замедление времени.
    Так как в движущихся системах отсчета линейные размеры тела сокращаются, то это явление приводит к тому, что масса тела в движущейся системе соответственно увеличивается.
    Очевидно, что классический закон сложения скоростей не может быть справедлив, так как он противоречит утверждению о постоянстве скорости света в вакууме. Мы запишем закон сложения скоростей для частного случая, когда тело движется вдоль оси Х1 (икс-1) системы отсчета К1 (ка-1), которая, в свою очередь, движется с некоторой скоростью вэ относительно системы отсчета К. Обозначим скорость тела относительно К через вэ1, а скорость этого же тела относительно К через вэ2. Тогда релятивистский закон сложения скоростей будет иметь вид.
    При движении замедляется протекание всех физических процессов, а также химических реакций в человеческом организме. Стоит рассмотреть интереснейшие следствия, вытекающие из специальной теории относительности Эйнштейна. «Парадокс часов", он же «парадокс близнецов» — мысленный эксперимент, при помощи которого пытаются «доказать» противоречивость специальной теории относительности. Согласно специальной теории относительности, с точки зрения «неподвижных» наблюдателей все процессы у двигающихся объектов замедляются. Но с другой стороны, этот же принцип относительности декларирует равноправие всех инерциальных систем отсчёта. На основании этого строится рассуждение, приводящее к кажущемуся противоречию. Для наглядности рассматривается история двух братьев-близнецов. Один из них (далее путешественник) отправляется в космический полёт, второй (далее домосед) остаётся на Земле. Парадокс заключен в следующем: с точки зрения домоседа часы движущегося путешественника имеют замедленный ход времени, поэтому после возвращения на Землю они должны отстать от часов домоседа. Относительно путешественника же двигалась Земля, значит, и отстать должны часы домоседа. Но с третьей стороны, братья равноправны, следовательно, после возвращения их часы должны показывать одно время. Постулаты теории относительности Эйнштейна также легко объясняют такое интересное явление космического пространства как черная дыра. Черная дыра образуется при гравитационном сжатии массивной звезды. Если масса некоторой звезды более чем в 2-3 раза больше массы Солнца, то ядро этой звезды сжимается и достигает такой плотности, что даже свет не может преодолеть силы его тяготения окружающих космических тел. Эйнштейн Альберт (1879—1955) — великий физик XX в. Создал новое учение о пространстве и времени — специальную теорию относительности. Обобщая эту теорию для неинерциальных систем отсчета, разработал общую теорию относительности, представляющую собой современную теорию тяготения. Впервые ввел представление о частицах света — фотонах. Его работа по теории броуновского движения привела к окончательной победе молекулярно-кинетической теории строения вещества. Он предсказал «квантовую телепортацию» и гиромагнитный эффект Эйнштейна — де Хааза. С 1933 года работал над проблемами космологии и единой теории поля. Благодаря Альберту Эйнштейну в науке произошел пересмотр понимания физической сущности пространства и времени, он построил новую теорию гравитации взамен ньютоновской. Эйнштейн вместе с Планком заложили основы квантовой теории. Все эти концепции многократно подтверждены экспериментами и образуют фундамент современной физики.