Как найти период обращения. Материал для проведения текущего контроля знаний по астрономии Как найти период вращения планеты

Земля — космический объект, вовлеченный в непрерывное движение Вселенной. Она вращается вокруг своей оси, преодолевает миллионы километров по орбите вокруг Солнца, вместе со всей планетарной системой медленно огибает центр галактики Млечный путь. Первые два движения Земли отчетливо заметны для ее обитателей по смене суточной и сезонной освещенности, изменению температурного режима, особенностям времен года. Сегодня в центре нашего внимания характеристики и период обращения Земли вокруг Солнца, его влияние на жизнь планеты.

Общие сведения

Наша планета движется по третьей по удаленности от светила орбите. От Солнца Землю в среднем отделяет 149,5 миллиона километров. Протяженность орбиты составляет примерно 940 млн км. Это расстояние планета преодолевает за 365 дней и 6 часов (один звездный, или сидерический, год — период обращения Земли вокруг Солнца относительно удаленных светил). Скорость ее во время движения по орбите достигает в среднем 30 км/с.

Для земного наблюдателя обращение планеты вокруг светила выражается в изменении положения Солнца на небосводе. Оно перемещается на один градус в день в восточном направлении по отношению к звездам.

Орбита планеты Земля

Траектория движения нашей планеты не является идеальным кругом. Она представляет собой эллипс с Солнцем в одном из его фокусов. Такая форма орбиты «вынуждает» Землю то приближаться к светилу, то удаляться от него. Точка, в которой расстояние от планеты до Солнца минимальное, называется перигелий. Афелий — участок орбиты, где Земля максимально удалена от светила. В наше время первая точка достигается планетой примерно 3 января, а вторая — 4 июля. При этом Земля движется вокруг Солнца не с постоянной скоростью: после прохождения афелия она ускоряется и замедляется, преодолев перигелий.

Минимальное расстояние, разделяющее два космических тела в январе, составляет 147 млн км, максимальное — 152 млн км.

Спутник

Вместе с Землей вокруг Солнца движется и Луна. При наблюдении с северного полюса спутник движется против часовой стрелки. Орбита Земли и орбита Луны лежат в разных плоскостях. Угол между ними примерно 5º. Это несовпадение значительно уменьшает количество лунных и солнечных затмений. Если бы плоскости орбит были идентичными, то одно из этих явлений случалось раз в две недели.

Орбита Земли и устроены таким образом, что оба объекта вращаются вокруг общего центра масс с периодом примерно 27,3 суток. При этом приливные силы спутника постепенно замедляют движение нашей планеты вокруг оси, тем самым незначительно увеличивая продолжительность дня.

Последствия

Ось нашей планеты не перпендикулярна плоскости ее орбиты. Этот наклон, а также движение вокруг светила приводят к определенным изменениям климата в течение года. Солнце поднимается выше над территорией нашей страны в то время, когда к нему наклонен северный полюс планеты. День становится длиннее, температура растет. Когда отклоняется от светила, на смену теплу приходит похолодание. Аналогичные изменения климата свойственны и южному полушарию.

Смена времен года происходит в точках равноденствия и солнцестояния, характеризующих определенное положение земной оси относительно орбиты. Остановимся на этом подробнее.

Самый длинный и самый короткий день

Солнцестояние — это момент времени, когда планетарная ось максимально наклонена к светилу или в противоположную сторону. Орбита движения Земли вокруг Солнца имеет два таких участка. В средних широтах точка, в которой оказывается светило в полдень, с каждым днем поднимается все выше. Так продолжается вплоть до летнего солнцестояния, которое приходится на 21 июня в северном полушарии Затем место полуденного пребывания светила начинает снижаться до 21-22 декабря. На эти дни в северном полушарии приходится зимнее солнцестояние. В средних широтах наступает самый короткий день, а затем он начинает прибывать. В южном полушарии наклон оси противоположный, поэтому приходится здесь на июнь, а летнее — на декабрь.

День равен ночи

Равноденствие — момент, когда ось планеты становится перпендикулярна к плоскости орбиты. В это время терминатор, граница между освещенной и темной половиной, проходит строго по полюсам, то есть день равен ночи. Таких точек на орбите тоже две. Весеннее равноденствие приходится на 20 марта, осеннее — на 23 сентября. Эти даты справедливы для северного полушария. В южном аналогично солнцестояниям равноденствия меняются местами: на март приходится осеннее, а на сентябрь — весеннее.

Где теплее?

Круговая орбита Земли — ее особенности в сочетании с наклоном оси — имеет еще одно следствие. В тот момент, когда планета проходит ближе всего к Солнцу, в его сторону смотрит южный полюс. В соответствующем полушарии в это время лето. Планета в момент прохождения перигелия получает на 6,9 % больше энергии, чем тогда, когда преодолевает афелий. Эта разница приходится именно на южное полушарие. В течение года оно получает чуть больше солнечного тепла, чем северное. Однако различие это несущественно, поскольку весомая часть «дополнительной» энергии приходится на водные просторы южного полушария и поглощается ими.

Тропический и сидерический год

Период обращения Земли вокруг Солнца относительно звезд, как уже говорилось, составляет примерно 365 дней 6 часов 9 минут. Это сидерический год. Логично предположить, что и смена сезонов укладывается в этот отрезок. Однако это не совсем так: время обращения Земли вокруг Солнца не совпадает с полным периодом смены сезонов. Она составляет так называемый тропический год, длящийся 365 дней 5 часов и 51 минуту. Измеряют его чаще всего от одного весеннего равноденствия до другого. Причина двадцатиминутной разницы между продолжительностью двух периодов — прецессия земной оси.

Год календарный

Для удобства принято считать, что в году 365 дней. Оставшиеся шесть с небольшим часов складываются в сутки за четыре оборота Земли вокруг Солнца. Для компенсации этого и с целью не допустить увеличение разницы между календарным и сидерическим годом вводится «дополнительный» день, 29 февраля.

Некоторое влияние на этот процесс оказывает единственный спутник Земли - Луна. Выражается оно, как отмечалось ранее, в замедлении вращения планеты. Каждые сто лет длительность суток увеличивается примерно на одну тысячную.

Григорианский календарь

Привычный нам счет дням был введен в 1582 году. в отличие от юлианского на протяжении длительного времени позволяет «гражданскому» году соответствовать полному циклу смены сезонов. Согласно ему каждые четыреста лет точно повторяются месяцы, дни недели и даты. По длительности год в григорианском календаре очень близок к тропическому.

Целью реформы было возвращение дня весеннего равноденствия на привычное место — на 21 марта. Дело в том, что с первого века нашей эры до шестнадцатого реальная дата, когда день равен ночи, передвинулась на 10 марта. Главной мотивацией пересмотра календаря стала необходимость правильного расчета дня Пасхи. Для этого было важно сохранить 21 марта днем, приближенным к реальному равноденствию. С этой задачей григорианский календарь справляется очень неплохо. Смещение даты весеннего равноденствия на один день произойдет не раньше, чем через 10 000 лет.

Если сравнивать календарный и то тут возможны более существенные изменения. В результате особенностей движения Земли и влияющих на него факторов примерно за 3200 лет накопится несоответствие со сменой сезонов длиною в один день. Если в это время будет важным сохранить примерное равенство тропического и календарного года, то вновь потребуется реформа, аналогичная той, что было осуществлена в XVI веке.

Период обращения Земли вокруг Солнца, таким образом, соотносится с понятиями календарного, сидерического и тропического года. Способы определения их продолжительности совершенствуются со времен античности. Новые данные о взаимодействии объектов в космическом пространстве позволяют делать предположения об актуальности современного понимания термина «год» через две, три и даже десять тысяч лет. Время обращения Земли вокруг Солнца и его связь со сменой сезонов и календарем — хороший пример влияния глобальных астрономических процессов на общественную жизнь человека, а также зависимостей отдельных элементов внутри глобальной системы Вселенной.

Еще с древних времен человечество считало, что Земля движется. Но вот как она движется во Вселенной всегда было спорным вопросом. Предполагалось, что вся Вселенная вращается вокруг нашей планеты. Первым предположил, что все-таки Земля вращается вокруг Солнца Н. Коперник. Затем другие ученые пытались математически найти зависимость и вычислить время движения Земли.

С течением времени сформировались достоверные факты о вращении нашей планеты:

  • выделяют два периода в году, когда Земля находится на определенном расстоянии. Первый период - когда Земля находится максимально близко к Солнцу. Называется такое время перигелий. Период, когда Земля на максимальном расстоянии от Солнца - афелий. Афелий приходится на начало июля, перигелий - на начало января;
  • форма нашей планетной орбиты не идеальный круг, а эллипс. Первым ученым описавшим это, был немецкий исследователь, астроном и математик Кеплер;
  • Земля имеет наклон к своей оси 23,4 градуса по отношению к вертикальной оси, это объясняет существование времен года в двух полушариях. Дни солнцестояния - когда точка на орбите наклонена по максимуму в направлении от Солнца, дни равноденствия - когда эти направления будут перпендикулярны друг другу.

Земля делает один оборот вокруг своей оси за двадцать четыре часа, так называемые сутки. В зоне, где солнечный свет попадает, обращенной к Солнцу, будет наблюдаться день, на противоположной стороне - ночь.

Вращение Земли

Период обращения Земли вокруг Солнца - это календарный год (365 дней). Так как это число не точно совпадает с количеством часов в 365-ти сутках, а немного больше, то за четыре года набегают целые сутки. Поэтому существуют високосные года, с количеством суток 366 и дополнительным днем в месяце феврале.

Дни солнцестояния - 22 декабря (зимний) - самый короткий день, 22 июня (летний)- самый длинный день. Дни равноденствия - 21 марта и 23 сентября - продолжительность дня и ночи равны как на Северном так и на Южном полушариях.

Земля - планета Солнечной системы, расположенная на расстоянии 150 миллионов километров от Солнца. Земля вращается вокруг него со средней скоростью 29,765 км/с. Полный оборот вокруг Солнца она совершает за период, равный 365,24 средних солнечных суток. Спутник Земли - Луна , обращается на расстоянии 384 400 км. Наклон земной оси к плоскости эклиптики 66° 33" 22", период обращения вокруг оси 23 ч 56 мин 4,1 с. Форма - геоид, сфероид. Экваториальный радиус - 6378,16 км, полярный — 6356,777 км. Площадь поверхности — 510,2 млн км 2 . Масса Земли - 6 * 10 24 кг. Объем — 1,083 * 10 12 км 3 . Гравитационное поле Земли обуславливает существование атмосферы и сферическую форму планеты.

Средняя плотность Земли равна 5,5 г/см 3 . Это почти вдвое больше, чем плотность поверхностных пород (около 3 г/см 3). С глубиной плотность возрастает. Внутренняя часть литосферы образует ядро, которое находится в расплавленном состоянии. Исследования показали, что ядро делится на две зоны: внутреннее ядро (радиус около 1300 км), которое, вероятно, является твердым, и жидкое внешнее ядра (радиус около 3400 км). Твердая оболочка тоже неоднородна, в ней имеется резкая поверхность раздела на глубине около 40 км. Эта граница называется поверхностью Мохоровичича. Область выше поверхности Мохоровичича называется корой , ниже - мантией. Мантия, как и кора, находится в твердом состоянии, за исключением отдельных лавовых «карманов». С глубиной плотность мантии нарастает от 3,3 г/см 3 у поверхности Мохоровичича и до 5,2 г/см 3 у границы ядра. На границе ядра она скачком возрастает до 9,4 г/см 3 . Плотность в центре Земли находится в пределах от 14,5 г/см 3 до 18 г/см 3 . У нижней границы мантии давление достигает 1 З00 000 атм. При спуске в шахты температура быстро повышается - примерно на 20 °С на 1 километр. Температура в центре Земли, по-видимому, не превышает 9000°С. Поскольку темп увеличения температуры с глубиной в среднем падает с приближением к центру Земли, источники тепла должны быть сосредоточены во внешних частях литосферы, скорее всего, в мантии. Единственной мыслимой причиной разогрева мантии является радиоактивный распад. 71% земной поверхности занимают океаны, образующие основную часть гидросферы. Земля - единственная планета Солнечной системы, обладающая гидросферой. Гидросфера поставляет водяной пар в атмосферу. Водяной пар благодаря инфракрасному поглощению создает значительный парниковый эффект, поднимающий среднюю температуру поверхности Земли примерно на 40°С. Наличие гидросферы сыграло решающую роль в возникновении жизни на Земле.

Химический состав атмосферы Земли на уровне моря — кислород (около 20%) и азот (около 80%). Современный состав атмосферы Земли, по-видимому, сильно отличается от первичного, который имел место 4,5 * 10 9 лет назад, когда сформировалась кора. Биосфера - растения, животные и микроорганизмы - существенно влияет как на общую характеристику планеты Земля, так и на химический состав ее атмосферы.

Луна

Диаметр Луны меньше земного в 4 раза, а масса меньше в 81 раз. Луна - небесное тело, ближе остальных расположенное к Земле.

Плотность Луны меньше, чем Земли (3,3 г/см 3). У нее отсутствует ядро, но в недрах сохраняется постоянная температура. На поверхности зафиксированы значительные перепады температуры: от +120°С в подсолнечной точке Луны до -170°С с противоположной стороны. Объясняется это, во-первых, отсутствием атмосферы, а во-вторых, продолжительностью лунного дня и лунной ночи, равной двум земным неделям.

Рельеф лунной поверхности включает низменности и гористые участки. Традиционно низменности называют «морями», хотя они и не заполнены водой. С Земли «моря» видны как темные пятна на поверхности Луны. Их названия достаточно экзотичны: море Холода, океан Бурь, море Москвы, море Кризисов и др.

Гористые участки занимают большую часть поверхности Луны и включают горные хребты и кратеры. Названия многих лунных горных хребтов аналогичны земным: Апеннины, Карпаты, Алтай. Наиболее высокие горы достигают высоты 9 км.

Кратеры занимают наибольшую площадь лунной поверхности. Некоторые из них имеют диаметр порядка 200 км (Клавий и Шиккард). некоторые - в несколько раз меньше (Аристарх, Анаксимеи).

Лунная поверхность наиболее удобна для наблюдения с Земли в местах, где граничат день и ночь, т. е. вблизи терминатора. Вообще с Земли можно видеть только одно полушарие Луны, однако возможны исключения. В результате того, что Луна движется по своей орбите неравномерно и ее форма не строго шарообразна, наблюдаются ее периодические маятникообразные колебания относительно своего центра масс. Это приводит к тому, что с Земли можно наблюдать порядка 60% лунной поверхности. Это явление носит название либрации Луны.

На Луне нет атмосферы. Звуки на ней не распространяются, поскольку отсутствует воздух.

Фазы Луны

Луна не обладает собственным свечением. поэтому видна только в той части, куда падают солнечные или отраженные Землей лучи. Этим объясняются фазы Луны. Каждый месяц Луна, двигаясь по орбите, проходит между Землей и Солнцем и обращена к нам темной стороной (новолуние). Через несколько дней на западной части неба появляется узкий серп молодой Луны. Остальная часть лунного диска в это время слабо освещена. Через 7 суток наступает первая четверть, через 14-15 — полнолуние. На 22-е сутки наблюдается последняя четверть, а через 30 суток - снова полнолуние.

Исследования Луны

Первые попытки изучить поверхность Луны состоялись достаточно давно, но непосредственно полеты на Луну начались только во второй половине XX в.

В 1958 г. состоялась первая посадка космического корабля на поверхность Луны, а в 1969 г. на нее высадились первые люди. Это были американские космонавты Н. Армстронг и Э. Олдрнн, доставленные туда космическим кораблем «Аполлон-11».

Основными целями полетов на Луну был отбор проб грунта и изучение рельефа поверхности Луны. Фотографии невидимой стороны Луны были впервые сделаны аппаратами «Луна-З» и «Луна-9». Заборы грунта производились аппаратами «Луна-16», «Луна-20» и др.

Морские приливы и отливы на Земле.

На Земле приливы и отливы чередуются в среднем каждые 12 ч 25 мин. Явление приливов и отливов связано с притяжением Земли к Солнцу и Луне. Но в связи с тем, что расстояние до Солнца слишком велико (150 * 10 6 км), солнечные приливы и отливы значительно слабее, чем лунные.

На участке нашей планеты, который обращен к Луне, сила притяжения больше, а на периферическом направлении меньше. В результате этого водная оболочка Земли растягивается вдоль линии, соединяющей Землю с Луной. Поэтому в части Земли, обращенной к Луне, вода Мирового океана выпучивается (возникает прилив). Вдоль круга, плоскость которого перпендикулярна линии Земля-Луна и проходит через центр Земли, уровень воды в Мировом океане понижается (возникает отлив).

Приливы и отливы тормозят вращение Земли. По расчетам ученых раньше земные сутки составляли не более б часов.

Меркурий

  • Расстояние от Солнца — 58 * 10 6 км
  • Средняя плотность — 54 200 кг/м 3
  • Масса — 0,056 массы Земли
  • Период обращения вокруг Солнца — 88 земных суток
  • Диаметр — 0.4 диаметра Земли
  • Спутники - нет
  • Физические условия:

  • Ближайшая планета к Солнцу
  • Атмосфера отсутствует
  • Поверхность усеяна кратерами
  • Диапазон суточных температур составляет 660°С (от +480°С до -180°С)
  • Магнитное поле в 150 раз слабее земного

Венера

  • Расстояние от Солнца — 108 * 10 6 км
  • Средняя плотность - 5240 кг/м 3
  • Масса — 0,82 массы Земли
  • Период обращения вокруг Солнца - 225 земных суток
  • Период обращения вокруг собственной оси — 243 суток, вращение обратное
  • Диаметр — 12 100 км
  • Спутники - нет

Физические условия

Атмосфера плотнее земной. Состав атмосферы: углекислый газ - 96%, азот и инертные газы > 4%, кислород - 0,002%, водяные пары - 0,02%. Давление 95-97 атм., температура у поверхности — 470-480°С, что обусловлено наличием парникового эффекта. Планета окружена слоем облаков, состоящих из капель серной кислоты с примесями хлора и серы. Поверхность в основном гладкая, с небольшим количеством хребтов (10% поверхности) и кратеров (17% поверхности). Грунт базальтовый. Магнитного поля нет.

Марс

  • Расстояние от Солнца — 228 * 10 6 км
  • Средняя плотность — 3950 кг/м 3
  • Масса — 0.107 массы Земли
  • Период обращения вокруг Солнца — 687 земных суток
  • Период обращения вокруг собственной оси — 24 ч 37 мин 23 с
  • Диаметр — 6800 км
  • Спутники - 2 спутника: Фобос, Деймос

Физические условия

Атмосфера разреженная, давление в 100 раз меньше земного. Состав атмосферы: углекислый газ — 95%, азот - более 2%. кислород - 0,3%, водяные пары — 1%. Диапазон суточных температур составляет 115°С (от +25°С днем до -90°С ночью). В атмосфере наблюдаются редкие облака и туман, что свидетельствует о выделениях влаги из резервуаров грунтовых вод. Поверхность усеяна кратерами. Грунт включает фосфор, кальций, кремний, а также оксиды железа, придающие планете красный цвет. Магнитное поле слабее земного в 500 раз.

Юпитер

  • Расстояние от Солнца - 778 * 10 6 км
  • Средняя плотность - 1330 кг/м 3
  • Масса - 318 масс Земли
  • Период обращения вокруг Солнца - 11,86 лет
  • Период обращения вокруг своей оси - 9 ч 55 мин 29 с
  • Диаметр — 142 000 км
  • Спутники - 16 спутников. Ио, Ганнмед, Каллисто, Европа — самые крупные
  • 12 спутников вращаются в одну сторону а 4 - в противоположную

Физические условия

Атмосфера содержит 90% водорода, 9% гелия и 1% других газов (в основном аммиак). Облака состоят из аммиака. Излучение Юпитера в 2,9 раза превосходит энергию, получаемую от Солнца. Планета сильно расплющена у полюсов. Полярный радиус на 4400 км меньше экваториального. На планете формируются крупные циклоны со временем жизни до 100 тысяч лет. Большое Красное Пятно, наблюдаемое на Юпитере, — пример такого циклона. В центре планеты, возможно, есть твердое ядро, хотя основная масса планеты в жидком состоянии. Магнитное поле в 12 раз сильнее земного.

Сатурн

  • Расстояние от Солнца — 1426 * 10 6 км
  • Средняя плотность — 690 кг/м 3
  • Масса - 95 масс Земли
  • Период обращения вокруг Солнца - 29,46 лет
  • Период обращения вокруг своей оси - 10 ч 14 мин
  • Диаметр — 50 000 км
  • Спутники - порядка 30 спутников. Большинство ледяные.
  • Некоторые: Пандора, Прометей, Янус, Эпиметея, Диона, Елена, Мимас, Энцелау, Тефня, Рея, Титан, Янет, Феба.

Физические условия

Атмосфера содержит водород, гелий, метан, аммиак. Получает от Солнца в 92 раза меньше тепла, чем Земля, 45% этой энергии отражает. Выделяет тепла в 2 раза больше, чем получает. У Сатурна имеются кольца. Кольца разделены на сотни отдельных колечек. Открыты X. Гюйгенсом. Кольца не сплошные. Имеют метеоритную структуру, т. е. состоят из твердых частиц различных размеров. Магнитное поле сравнимо с земным.

Уран

  • Расстояние от Солнца - 2869 * 10 6 км
  • Средняя плотность - 1300 кг/м 3
  • Масса - 14,5 массы Земли
  • Период обращения вокруг Солнца - 84,01 года
  • Период обращения вокруг собственной оси -16 ч 48 мин
  • Экваториальный диаметр - 52 300 км
  • Спутники - 15 спутников. Некоторые из них: Оберон (самый далекий и второй по величине), Миранда, Корделия (самый близкий к планете), Ариэль, Умбриэль, Титания
  • 5 спутников движутся в направлении вращения планеты вблизи плоскости ее экватора по почти круговым орбитам, 10 обращаются вокруг Урана внутри орбиты Миранды

Физические условия

Состав атмосферы: водород, гелий, метан. Температура атмосферы -150°С по радиоизлучению. В атмосфере обнаружены метановые облака. Недра планеты горячие. Ось вращения наклонена под углом 98°. Обнаружено 10 темных колец, отделенных промежутками. Магнитное поле в 1,2 раза слабее земного н простирается на 18 радиусов. Имеется радиационный пояс.

Нептун

  • Расстояние от Солнца - 4496 * 10 6 км
  • Средняя плотность - 1600 кг/м 3
  • Масса - 17,3 массы Земли
  • Период обращения вокруг Солнца - 164,8 лет
  • Спутники - 2 спутника: Тритон, Нереида

Физические условия

Атмосфера протяженная и состоит из водорода (50%), гелия (15%), метана (20%), аммиака (5%). Температура атмосферы около -230°С по расчетам, а по радиоизлучению -170°С. Это свидетельствует о горячих недрах планеты. Открыл Нептун 23 сентября 1846 г. И. Г. Галлев из Берлинской обсерватории при помощи расчетов астронома Ж. Ж. Леверье.

Плутон

  • Расстояние от Солнца — 5900 * 10 6
  • Средняя плотность — 1000—1200 кг/м 3
  • Масса — 0,02 массы Земли
  • Период обращения вокруг Солнца - 248 лет
  • Диаметр — 3200 км
  • Период обращения вокруг своей оси - 6,4 суток
  • Спутники - 1 спутник - Харон, был открыт в 1978 г. Дж. У. Крнсти из Морской лаборатории в Вашингтоне.

Физические условия

Не обнаружено видимых признаков атмосферы. Над поверхностью планеты максимальная температура -212°С, а минимальная -273°С. Поверхность Плутона предположительно покрыта слоем метанового льда, также возможен водный лед. Ускорение свободного падения на поверхности составляет 0,49 м/с 2 . Скорость движения Плутона по орбите 16.8 км/ч.

Плутон был открыт в 1930 г. Клайдом Томбо и назван по имени древнегреческого бога подземного царства, поскольку скудно освещен Солнцем. Харон по представлению древних греков - перевозчик умерших в царство мертвых через реку Стикс.

Период обращения тела, которое движется по замкнутой траектории можно измерить при помощи часов. Если же обращение происходит слишком быстро, это делается после изменения некоторого числа полных обращений. Если тело вращается по окружности, и известна его линейная скорость, эта величина рассчитывается по формуле. Период обращения планеты рассчитывается по третьему закону Кеплера.

Вам понадобится

  • - секундомер;
  • - калькулятор;
  • - справочные данные по орбитам планет.

Инструкция

Измерьте при помощи секундомера время, требующееся вращающемуся телу, чтобы прийти в исходную точку. Это и будет период его вращения. Если измерить вращения тела затруднительно, то измерьте время t, N полных обращений. Найдите отношение этих величин, это и будет период вращения данного тела T (T=t/N). Период измеряется в тех же величинах, что и время. В интернациональной системе измерения это секунда.

Если известна частота вращения тела, то найдите период, поделив число 1 на значение частоты (T=1/).

Если тело вращается по круговой траектории и известна его линейная скорость, рассчитайте период его вращения. Для этого измерьте радиус R траектории, по которой вращается тело. Убедитесь, что модуль скорости не изменяется со временем. Затем произведите расчет. Для этого поделите длину окружности, по которой движется тело, которая равна 2 R (3,14), на скорость его вращения v. Результатом будет период вращения данного тела по окружности T=2 R/v.

Если нужно рассчитать период обращения планеты, которая движется вокруг звезды, используйте третий закон Кеплера. Если две планеты вращаются вокруг одной звезды, то квадраты периодов их обращения относятся как кубы больших полуосей их орбит. Если обозначить периоды обращения двух планет T1 и T2, большие полуоси орбит (они эллиптичные), соответственно, a1 и a2, то T1 / T2 = a1 /a2 . Данные расчеты верны в том случае, если массы планет значительно уступают массе звезды.

Пример: Определите период обращения планеты Марс. Чтобы рассчитать эту величину, найдите длину большей полуоси орбиты Марса, a1 и Земли, a2 (как планеты, которая тоже вращается вокруг Солнца). Они равны a1=227,92 10^6 км и a2=149,6 10^6 км. Период вращения земли T2=365,25 суток (1 земной год). Тогда найдите период обращения марса, преобразовав формулу из третьего закона Кеплера, для определения периода вращения Марса Т1= (T2 a1 /a2)= (365,25 (227,92 10^6) /(149,6 10^6)) 686,86 суток.


Внимание, только СЕГОДНЯ!

Все интересное

Некоторые планеты Солнечной системы обладают спутниками. Марс относится к числу подобных планет. Два небесных тела признаются естественными спутниками Марса. Вокруг Марса вращаются два естественных спутника, которые называют Деймос и Фобос. Оба…

«И все-таки она вертится!» - знамениты слова, которые приписывают Галилею. Наша планета вращается не только вокруг солнца, но и вокруг своей оси. Почему это происходит, гипотез выдвинуто немало, но к общему мнению ученые пока не пришли. …

Согласно второму закону Ньютона, любая сила сообщает телу ускорение, если действует на него одна. Поэтому она пропорционально от него зависит. Для того чтобы рассчитать силу, которая сообщает ускорение, нужно знать величину этого ускорения и массу…

Сила может подействовать только на материальное тело, которое обязательно имеет массу. Пользуясь вторым законом Ньютона, можно определить массу тела, на которое подействовала сила. В зависимости от природы силы для определения массы через силу могут…

Тангенциальное ускорение бывает у тел, движущихся по криволинейной траектории. Оно направлено в направлении изменения скорости тела по касательной к траектории движения. Тангенциального ускорения не бывает у тел, равномерно движущихся по окружности,…

Линейная скорость характеризует криволинейное движение. В любой точке траектории она направлена по касательной к ней. Ее можно измерить при помощи обычного спидометра. Если известно, что такая скорость постоянна, то она находится из отношения пути…

Чтобы правильно рассчитать действие силы, вращающей тело, определите точку ее приложения и расстояние от этой точки до оси вращения. Это важно для определения технических характеристик различных механизмов. Крутящий момент двигателя можно…

Центростремительное ускорение появляется при движении тела по окружности. Направленно оно к ее центру, измеряется в м/с. Особенностью этого типа ускорения является то, что оно есть даже тогда, когда тело движется с постоянной скоростью. Зависит оно…

Любое тело не может мгновенно изменить свою скорость. Это свойство называется инертностью. Для поступательно движущего тела, мерой инертности является масса, а для вращающегося – момент инерции, который зависит от массы, формы и оси, вокруг которой…

Нормальное ускорение наблюдается в том случае, когда тело движется по окружности. Причем движение это может быть равномерным. Природа этого ускорения связанна с тем, что тело, которое движется по окружности, постоянно меняет направление скорости,…

Угловое ускорение показывает: как изменилась угловая скорость тела, движущегося по окружности, за единицу времени. Поэтому для его определения найдите начальную и конечную угловые скорости за данный промежуток времени и произведите расчет. Кроме…

Теория

На смену геоцентрической системе мира, созданной в начале нашей эры Птолемеем, пришла гелиоцентрическая система, созданная Коперником. Несколько позднее немецкий астроном И. Кеплер на основе астрономических наблюдений установил законы движения планет вокруг Солнца.

Согласно 1-му закону Кеплера любая планета движется вокруг Солнца по замкнутой кривой, которая называется эллипсом (внешне похож на овал). Солнце находится в одном из фокусов этого эллипса. Эллипс имеет два фокуса: это две такие точки внутри кривой, сумма расстояний от которых до произвольной точки эллипса постоянна. Оказывается, что орбиты всех планет Солнечной системы лежат примерно в одной плоскости. Большинство планет движутся по орбитам-эллипсам, которые близки к окружностям. Лишь Марс и Плутон имеют сравнительно вытянутые орбиты.

Второй закон Кеплера устанавливает, что скорость планеты больше тогда, когда она в своем движении находится ближе к Солнцу (в так называемой точке перигелия) и меньше тогда, когда она находится на наибольшем расстоянии от Солнца (в точке афелия). Третий закон Кеплера устанавливает связь между периодом обращения планеты вокруг Солнца и ее средним расстоянием от Солнца, он применяется ко всему коллективу планет Солнечной системы.

Законы Кеплера получили свое объяснение лишь после открытия законов тяготения. Физические объекты участвуют в гравитационном взаимодействии, т.е. они притягиваются друг к другу. Гравитационное взаимодействие обладает всеобщей универсальностью: ему подвержены все материальные объекты и даже физические поля. Закон всемирного тяготения был открыт И. Ньютоном. Он утверждает, что два неподвижных точечных тела взаимодействуют друг с другом с силой, пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними, т.е.

, (1)

где γ называют гравитационной постоянной. Этот закон справедлив и для взаимодействия однородных шаров, но в этом случае под r следует понимать расстояние между их центрами.

Рассмотрим движение планеты вокруг Солнца (рис. 1). Планета движется под действием силы F (силы тяготения (1)), которая действует вдоль линии, соединяющей центры тел. Движением Солнца можно пренебречь, так как его масса М гораздо больше массы планеты m. Пусть орбита планеты представляет собой окружность, тогда скорость движения планеты направлена по касательной к этой окружности и перпендикулярно действующей силе. Скорость в этом случае постоянна по величине, поэтому планета движется с центростремительным ускорением. Второй закон Ньютона для этого движения выглядит следующим образом:

Отсюда получаем, что . Период обращения планеты вокруг Солнца . Выразив из предыдущей формулы v, получаем . Возведя правую и левую части этой формулы в квадрат, после преобразований получим:

. (2)

Это и есть третий закон Кеплера, который можно сформулировать следующим образом: отношение куба расстояния от планеты до Солнца к квадрату периода ее обращения вокруг Солнца есть величина постоянная, одинаковая для всех планет Солнечной системы. В случае движения по эллипсу, когда расстояние от планеты до Солнца при движении изменяется, в законе фигурирует некоторое среднее расстояние, т.е. полусумма максимального и минимального расстояний от данной планеты до Солнца. Закон Кеплера справедлив для любой планетной системы, а также для системы спутников какой-либо конкретной планеты, например, для системы спутников Юпитера или Урана. В последнем случае под М в формуле (2) понимается масса соответственно Юпитера или Урана.