Как солнце так и земля имеют. Тема: Геологическая эволюция

1. Как Солнце, так и Земля имеют …

1. атмосферу

2. литосферу

3. фотосферу

4. центральную зону термоядерных реакций.

2. Большинство химических элементов современной Вселенной образовалось …

1. в ходе термоядерных реакций в недрах звезд и взрывов Сверхновых

2. в первые моменты существования Вселенной, благодаря высокой температуре

3. в ходе химических реакций в недрах планет и звезд

4. при квантовом испарении «черных дыр».

3. Понятия Вселенной и Метагалактики различаются тем, что …

1. Метагалактика – лишь часть Вселенной

2. Вселенная одна, а метагалактик в ней много

3. Метагалактика может включать в себя и другие вселенные, кроме нашей

4. Вселенная изотропна, а Метагалактика имеет форму плоской спирали.

4. По своим размерам Земля занимает __________ место среди 8 планет Солнечной системы.

4. седьмое.

5. Реликтовое излучение несет информацию о состоянии Вселенной в ту эпоху, когда она была …

1. плотной и горячей

2. пустой и холодной

3. пустой и горячей

4. плотной и холодной.

6. Научная космология начала развиваться в …

1. XX веке на основе общей теории относительности

2. Древней Греции на основе натурфилософской картины мира Аристотеля

3. эпоху Возрождения на основе гелиоцентрической системы Коперника

4. XVII веке на основе классической механики Ньютона

7. Основной движущей силой геологической эволюции нашей планеты служит …

1. продолжающаяся дифференциация вещества в земных недрах

2. жизнедеятельность земных организмов

3. непрерывно поступающая на Землю солнечная энергия

4. эрозия, вызываемая движением воздуха, воды и ледников.

8. Сходство между Большим Взрывом (процессом, в ходе которого образовалась и приобрела свои свойства наша Вселенная) и обычным взрывом артиллерийского снаряда состоит в том, что …

1. расстояния между галактиками с течением времени увеличиваются, подобно тому, как разлетаются в разные стороны осколки взорвавшегося снаряда

2. и осколки снаряда, и галактики разлетаются по направлению от определенной точки в пространстве – центра взрыва

3. движущей силой расширения и Вселенной, и продуктов взрыва снаряда является давление раскаленных газов

4. расширение происходит только в ограниченной области (которую успела охватить ударная волна от взрыва), а за пределами этой области никакого расширения нет.

Масса обычного вещества, доступного непосредственным наблюдениям в телескопы и сосредоточенного в основном в звездах, составляет ______________ от полной массы материи во Вселенной.

1. менее 5 %

2. около 30 %

3. около 90 %

4. практически 100 %

10. Почти вся масса земной атмосферы сосредоточена в слое, толщина которого …

1. гораздо меньше радиуса Земли

2. сравнима с радиусом Земли

3. гораздо больше радиуса Земли

4. до сих пор остается совершенно неопределенной.

ПостНаука развенчивает научные мифы и знакомит читателей с комментариями наших экспертов, которые объясняют общепринятые заблуждения. Мы попросили наших авторов рассказать о причинах, по которым сформировались те или иные устоявшиеся представления о Солнце.

На Солнце нет воды

Это неправда. Фраза о том, что на Солнце есть вода, звучит очень странно, тем не менее вода на Солнце есть, и ее довольно много. Откуда она там берется и в каком виде существует? Вода имеет очень простую формулу: для ее образования нужен только водород и кислород. И того и другого на Солнце в избытке. Тем не менее этого вовсе не достаточно, чтобы вода непременно образовалась. Например, на Солнце есть все компоненты, чтобы сделать молекулу ДНК, но это не значит, что эта молекула может там существовать, так как, конечно же, она будет сразу разрушена под действием температуры. Иными словами, на Солнце могут существовать не все молекулы, а лишь самые устойчивые, самые неприхотливые. Такой молекулой является, в частности, угарный газ (CO), который на редкость стойкий благодаря так называемой тройной валентной связи. Еще одна молекула - азот (N2). И как ни странно, это и молекула воды, являющаяся, благодаря счастливому стечению обстоятельств, одной из самых прочных в природе. Так что вода на Солнце есть, и хотя в процентах молекулы воды составляют ничтожную долю от массы Солнца, в абсолютных величинах запасов пресной воды на Солнце больше, чем где бы то ни было в нашей Солнечной системе.

Можно отметить, что, так как молекулы, в том числе молекулы воды, чувствительны к температуре, то преимущественно они образуются в областях низкой температуры. На Солнце такими участками являются солнечные пятна, имеющие температуру всего около 4,5 тысяч градусов (окружены они областями с температурой 6 тысяч градусов). Именно в пятнах, а также в очень узком слое под поверхностью Солнца, называемом областью температурного минимума, сосредоточены основные запасы воды на Солнце. Так что в некотором смысле, когда в Средневековье люди полагали, что солнечные пятна - это озера воды на солнечной поверхности, они были в каком-то смысле не очень далеко от истины.

Сергей Богачев

Солнце все время находится на одном месте

Это неправда. Солнце является типичной звездой, которых очень много во Вселенной. Оно находится в космосе, где сосредоточена большая часть газа и звезд, которые образовались из этого газа. Наша Галактика имеет спиральную структуру, и звезды концентрируются в ее рукавах, между ними и так далее. Все они, как и Солнце, вращаются вокруг центра Галактики. Для Солнца движение вокруг центра Галактики происходит со скоростью 217 километров в секунду. Скорость высокая, но, поскольку масштабы огромные, свой оборот Солнце делает примерно за 250 миллионов лет (галактический год). Таким образом, Солнце непрерывно движется в космическом пространстве вокруг центра Галактики.

Солнце является центром Солнечной системы, в которую входит само Солнце как центральное тело и планеты, которые имеют очень маленькую массу и поэтому вращаются вокруг Солнца, мало влияя на движение самого Солнца. Масса Солнца гораздо больше масс всех планет, поэтому центр масс Солнечной системы находится внутри самого Солнца. Поскольку планеты движутся с разной скоростью и меняют свое положение по отношению к Солнцу, центр масс перемещается внутри Солнца, и Солнце вращается вокруг этого перемещающегося внутри него центра масс. Таким образом, движение Солнца происходит вокруг центра Галактики и центра масс Солнечной системы.

Владимир Кузнецов

Летом Солнце ближе к Земле, чем зимой

Это неправда. Начнем с того, что расстояние между Солнцем и Землей действительно не является постоянным, а меняется в течение года. Это связано с тем, что Земля вращается вокруг Солнца не по кругу, а «почти по кругу». Фигура, которую представляет собой орбита Земли, как и орбиты всех других планет нашей Солнечной системы, называется эллипсом. В целом орбиты планет могут быть сколь угодно вытянутыми. Такую орбиту, в частности, имеет Плутон, который во время плутонианского лета приближается к Солнцу на расстояние «всего» 4,5 миллиарда километров, а «зимой» удаляется от Солнца на 7,5 миллиардов. К слову, год на Плутоне длится 250 лет. Если бы орбита Земли была бы похожа на орбиту Плутона, то видимый размер Солнца на небе в течение года менялся бы в два раза, а потоки тепла и света, падающие на Землю зимой и летом, различались бы в 4 раза. Средняя температура на Земле зимой была бы около минус 50 °C на экваторе, а у полюсов - в районе минус 150 °C, и, скорее всего, эти строки просто некому было бы читать. К счастью, орбита Земли - это почти круг. Среднее расстояние от Солнца до Земли составляет почти 150 миллионов километров (свет проходит это расстояние чуть более чем за 8 минут). В ближней точке орбиты Земля приближается к Солнцу на 2,5 миллиона километров, а в дальней точке удаляется на такое же расстояние. Соответствующее изменение расстояния составляет всего 1,5%. На такую же долю меняется видимый размер диска Солнца на небе в течение года. Разумеется, большинство людей этого даже не замечает.

И все же, когда Солнце ближе всего к Земле - летом или зимой? Ответ на это вопрос известен: Земля проходит через ближнюю точку своей орбиты каждый год примерно в одно и то же время - почти сразу после новогодних праздников, около 3–4 января. Иными словами, в это время на небе можно увидеть Солнце максимально большого размера. Становится ли в этот день хоть немного теплее? Строго говоря, да, так как близость к Солнцу увеличивает среднюю температуру на 2–3 градуса, но, конечно же, смена времен года при той орбите Земли, которую мы имеем, никак не связана с расстоянием до Солнца. Гораздо более важной в нашей земной жизни является высота Солнца над горизонтом и, как следствие, плотность падающих на поверхность Земли солнечных лучей. А она, особенно на высоких широтах, на которых находится большая часть нашей страны, меняется в течение года не на 1–2%, а в несколько раз.

Впрочем, есть и гораздо более простой способ понять, что времена года никак не связаны с расстоянием до Солнца. Достаточно вспомнить, что январь является центральным месяцем зимы лишь в северном полушарии. В южном полушарии на это же самое время приходится пик лета. Соответственно, для большинства жителей той же Южной Америки тот факт, что Солнце ближе всего в январе, вероятно, не кажется таким удивительным, как для нас.

Сергей Богачев

доктор физико-математических наук, главный научный сотрудник Лаборатории рентгеновской астрономии Солнца ФИАН

Солнце состоит из огненной лавы

Это неправда. Солнце, как типичная звезда, образовалось при сжатии протооблака. Считается, что Солнце является звездой третьего поколения. Когда произошел взрыв и образовалась Вселенная, возникли элементарные частицы и водород, газ начал гравитационно сжиматься, образуя скопления галактик, галактики, скопления звезд и сами звезды. Потом эти звезды взорвались, и их вещество было выброшено в межзвездное пространство. Солнце образовалось из межзвездного вещества, два раза побывавшего в звездах, которые сжимались и взрывались. Помимо водорода, в нем есть тяжелые элементы, которые образуются при высоком давлении, то есть при сжатии звезды.

Вещество, из которого состоит Солнце, соответствует космической распространенности элементов, среди которых преобладает водород. Также в нем образовались и небольшие примеси различных тяжелых элементов, и если мы смотрим на Солнце, мы видим линии излучения этих элементов, то есть это плазма, нагретая до высокой температуры. Она не может превратиться в вещество, которое мы видим на Земле, в твердое тело и так далее, потому что она нагрета до высокой температуры, и источником этой энергии являются термоядерные реакции, которые проистекают в недрах Солнца. Это та термоядерная энергия, которую мы хотим получить на Земле. Условия для протекания ядерных реакций возникают за счет высокого давления и высокой температуры в центре Солнца, в виде излучения выделяющаяся ядерная энергия распространяется наружу, и все ионизует - и внутренности Солнца, и солнечную корону. Далее солнечная плазма переходит в солнечный ветер, и мы регистрируем его частицы. Это и есть то, что истекает из самого Солнца, это та плазма, из которой оно состоит.

Владимир Кузнецов

доктор физико-математических наук, директор Института земного магнетизма, ионосферы и распространения радиоволн РАН, действительный член Международной академии астронавтики

В будущем Солнце увеличится и уничтожит все живое на Земле

Это правда. Существуют звезды, которые называются «красные гиганты». Они имеют приблизительно такую же массу, что и Солнце, но примерно вдвое старше него. И при той же самой массе их размер в десятки раз превышает размер нашего Солнца. Теория звездной эволюции, которая сейчас неплохо разработана, объясняет это достаточно естественным образом - как результат эволюционных изменений, происходящих в звездах после того, как в их недрах, где сейчас происходит термоядерная реакция превращения водорода в гелий, постепенно заканчивается термоядерное горючее (водород). Такое же увеличение размеров непременно произойдет и с Солнцем. В будущем оно постепенно должно раздуться до таких размеров, что, вероятно, орбита Венеры окажется внутри нашей звезды. При этом количество энергии, которую Солнце будет излучать, многократно превзойдет современный уровень.

Конечно, в это время не только жизнь на Земле будет невозможна, но и вообще с нашей планеты исчезнет вода, улетучится атмосфера, останется сухая раскаленная пустыня. Но это будет в очень далеком будущем, спустя не менее 5 миллиардов лет от нашего времени. Это колоссальный срок, он почти в сто раз длиннее, чем отрезок времени, который отделяет нас от эпохи динозавров, когда людей вообще еще не существовало. Поэтому нам не нужно беспокоиться о судьбе наших далеких потомков. Если до того времени доживет высокоразвитое общество, его возможности будут непредставимо высокими для нас, и люди наверняка придумают способ найти себе более подходящее место для жизни.

Анатолий Засов

доктор физико-математических наук, профессор кафедры астрофизики и звездной астрономии физического факультета МГУ, заведующий отделом Внегалактической астрономии ГАИШ МГУ

Наше светило хранит в себе множество тайн. Чтобы найти ответ на вопрос «Солнце это звезда или планета», сперва нужно разобраться, как образуются планеты и звезды и что они собой представляют.

Как появляются звезды

Звезды – это невероятно огромные скопления газа, удерживаемого силой собственной гравитации. В их недрах протекают реакции термоядерного синтеза, в результате которых выделяется колоссальная энергия. Первые звезды появились на из облаков газа и частичек пыли. Эти частички сталкивались между собой, образуя все большие и большие объекты. И чем крупнее становился объект, тем сильнее он притягивал новые частицы.

Такие зародыши будущих звезд разогревались от постоянной бомбардировки пылью и более крупными кусками материи. В итоге их гравитация собирала вокруг себя облако газов, разогревая его. Далее происходила первая термоядерная реакция, и звезда начинала «светить»! Оставшиеся газы и пыль формировали вокруг молодой звезды диск.

Как появляются планеты

После зарождения звезды, вокруг нее остается много «строительного материала». Этот газопылевой диск вращается, увлекаемый силой ее гравитации. Все новые и новые частички пыли в нем сталкиваются, создавая более крупные объекты. От постоянных столкновений они разогреваются. Поэтому первые планеты напоминали сгустки вулканической лавы, которые постепенно остывали, покрываясь корой из камня. Другие собирали вокруг себя облака газа, становясь газовыми гигантами.

Когда Солнечная система только появилась, в ней было несколько десятков планет. Они кружились в безумном танце вокруг своей звезды, сталкиваясь, разрушаясь или сливаясь. Мелкие осколки притягивались более крупными, становясь их частью. Другие улетали на периферию системы, образуя пояс астероидов, существующий, и по сей день. А все, что осталось внутри этого пояса, притянулось планетами.

Чем является Солнце?

Теперь мы выяснили, что наше Солнце относится к звездам. Но что из себя представляет наше светило и каков его состав?

Солнце состоит в основном из водорода и гелия. Оно содержит и другие вещества, но в значительно меньших количествах. Есть у него ядро, в котором протекают термоядерные реакции. Из-за невероятной гравитации, фотон из ядра Солнца добирается до его поверхности за сотни тысяч лет. Иногда этот путь занимает миллионы лет. После этого фотону нужно всего 8 минут, чтобы добраться до Земли. Каждый день мы видим свет, образовавшийся в недрах Солнца сотни тысяч лет назад.

Строение Солнца

Температуры поверхности и ядра звезды различаются на несколько миллионов градусов. Внешняя оболочка Солнца – корона, состоит из энергетических извержений и протуберанцев. Слишком сильные извержения отправляют в сторону Земли поток электронов, протонов, нейтрино и . При взаимодействии с магнитным полем нашей планеты они создают одно из красивейших зрелищ – северное сияние!

Солнце – удивительное небесное тело. Оно дарит свет каждому из нас. Все в Солнечной системе, включая нашу планету и нас самих, состоит из тех частиц газа и пыли, что образовали ее. Однако в масштабах Вселенной, Солнце – лишь небольшая звезда, Желтый Карлик, но какой родной и близкий каждому человеку!

Земля - круглая, Меркурий - самая горячая планета, а Солнце - желтое. Казалось бы, это простые истины, известные даже тем, кто не посещал школьные уроки астрономии. На самом же деле все немного иначе.

Мы собрали для вас несколько довольно распространенных заблуждений с полным их разоблачением.

Земля имеет форму идеального фара?

Это так и не так одновременно. Форма Земли постоянно меняется из-за непрерывного движения литосферных плит. Конечно, скорость его невелика - в среднем она составляет не более 5 см в год, - однако это влияет на «профиль» нашей планеты, который далек от идеальной гладкости.

Впрочем, сенсационные снимки, якобы показывающие настоящую форму Земли, - не что иное, как гравитационная модель планеты. Она была создана на основе данных со спутников и не демонстрирует истинной формы небесного тела, а лишь показывает отличие в силе притяжения в разных местах планеты.


У Луны есть темная сторона?

Существует довольно популярное заблуждение, что солнечные лучи освещают только одну сторону Луны, в то время как другая всегда остается темной. Это убеждение возникло из-за того, что наш спутник всегда повернут к Земле одной стороной, а вторая остается недоступной земным наблюдателям.

На самом же деле Солнце одинаково согревает и видимую, и невидимую части Луны. Дело в том, что период обращения Луны вокруг своей оси совпадает с периодом собственного вращения спутника вокруг Земли, именно поэтому мы можем наблюдать только одно ее полушарие.


Температура на поверхности Меркурия выше, чем на других планетах?

Казалось бы, все логично - Меркурий находится ближе всего к Солнцу, а значит, и температура его поверхности выше, чем на других планетах. Однако самая «жаркая» планета Солнечной системы - Венера, хотя расположена она более чем на 50 млн км дальше от светила, чем ее космический сосед. Средняя дневная температура на Меркурии составляет около 350 °C, тогда как у поверхности Венеры она достигает почти 480 °С.

На самом же деле температура на поверхности планеты зависит от атмосферы. На Меркурии она практически отсутствует, тогда как атмосфера Венеры, почти полностью состоящая из углекислого газа, очень плотная. Из-за ее высокой плотности на поверхности планеты образуется сильный парниковый эффект, который и делает планету по-настоящему жарким местом.

Все знают, что температура поверхности Солнца очень велика - более 5 700 °C. Поэтому логично предположить, что наше светило полыхает, как гигантский костер. Однако это не так. То, что мы принимаем за огонь, на самом деле тепловая и световая энергия, которая выделяется в процессе термоядерной реакции, происходящей в солнечном ядре.

Термоядерная реакция - это превращение одних элементов в другие, которое сопровождается выбросом тепловой и световой энергии. Она проходит через все солнечные слои, достигая верхнего - фотосферы, которая и кажется нам горящей.


Солнце имеет желтый цвет?

Каждому, кто немного знаком с астрономией, известно, что Солнце относится к категории звезд, именуемых желтыми карликами. Поэтому вполне логично предположить, что наше светило имеет желтый цвет. На самом же деле, как и прочие желтые карлики, Солнце абсолютно белое.

Но почему же человеческое зрение видит его именно желтым? Оказывается, все дело в земной атмосфере. Как известно, лучше всего она пропускает длинные волны, находящиеся в желто-красной части спектра. Короткие же волны из зелено-фиолетовой части спектра, в которой преимущественно излучает Солнце, атмосфера рассеивает. Благодаря этому эффекту наша звезда и кажется наблюдателю с Земли желтой. Однако стоит только покинуть пределы земной атмосферы, как Солнце «обретет» свой настоящий цвет.


В открытом космосе человек без скафандра взорвется?

Причиной этого заблуждения стали, конечно же, голливудские фильмы, демонстрирующие страшные сцены гибели людей, оказавшихся за бортом космического корабля.

На самом деле наша кожа довольно эластична и вполне способна удержать все внутренние органы на местах. Стенки сосудов защитят кровь от закипания также благодаря своей эластичности. Кроме того, при отсутствии внешнего давления - а его в открытом космосе нет - температура кипения крови поднимается до 46 °C, что существенно выше температуры человеческого тела.

А вот вода, заключенная в клетках кожи, начнет закипать, и человек все-таки несколько увеличится в размерах, однако совершенно точно не взорвется.

Настоящей причиной гибели человека станет кислородное голодание. Спустя 15 секунд после того как человек окажется в открытом космосе без скафандра, оно вызовет потерю сознания, а через 2 минуты - смерть.


Зимой Земля дальше от Солнца, чем летом?

Еще один миф, который кажется довольно логичным. Все просто: если зимой холоднее, чем летом, значит, Земля «убегает» от своей звезды. Однако в реальности все в точности наоборот - в холодное время года наша планета на 5 млн км ближе к Солнцу, чем летом. Почему же зимой мы кутаемся в одежду, а летом купаемся и загораем?

Дело в том, что, помимо вращения вокруг Солнца, Земля совершает и обороты вокруг своей оси, за счет чего происходит смена дня и ночи. Ось, которая проходит через северный и южный полюсы, находится не перпендикулярно орбите и попадающим на нее солнечным лучам. Таким образом, одну половину года большая часть солнечного тепла попадает на южное полушарие, а в течение другого полугодия - на северное, что и приводит к смене времен года.

Как известно, зимы в южном полушарии теплее, чем в северном. Это объясняется тем, что ближе всего Земля подходит к Солнцу в январе, то есть тогда, когда в южном полушарии царит календарное лето.


Солнце - центральное светило, вокруг которого обращаются все планеты и малые тела Солнечной системы. Это не только центр тяготения, но и источник энергии, обеспечивающий тепловой баланс и природные условия на планетах, в том числе жизнь на Земле. Движение Солнца относительно звезд (и горизонта) изучалось с древних времен, чтобы создавать календари, которые люди использовали, прежде всего, для сельскохозяйственных нужд. Григорианский календарь, в настоящее время используемый почти повсюду в мире, является по существу солнечным календарем, основанным на циклическом обращении Земли вокруг Солнца*. Визуальная звездная величина Солнца равна 26,74, и оно является самым ярким объектом на нашем небе.

Солнце - рядовая звезда, находящаяся в нашей галактике, называемой просто Галактика или Млечный Путь, на расстоянии ⅔ от ее центра, что составляет 26000 световых лет, или ≈10 кпк, и на расстоянии ≈25 пк от плоскости Галактики. Оно обращается вокруг ее центра со скоростью ≈220 км/с и периодом 225–250 миллионов лет (галактический год) по часовой стрелке, если смотреть со стороны северного галактического полюса. Орбита является, как предполагают, приблизительно эллиптической и испытывает возмущения галактических спиральных рукавов из-за неоднородных распределений звездных масс. Кроме того, Солнце совершает периодические перемещения вверх и вниз относительно плоскости Галактики от двух до трех раз за оборот. Это приводит к изменению гравитационных возмущений и, в частности, оказывает сильное влияние на устойчивость положения объектов на краю Солнечной системы. Это служит причиной вторжения комет из Облака Оорта внутрь Солнечной системы, что ведет к увеличению ударных событий. Вообще же, с точки зрения различного рода возмущений, мы находимся в довольно благоприятной зоне в одном из спиральных рукавов нашей Галактики на расстоянии ≈ ⅔ от ее центра.

*Григорианский календарь, как система исчисления времени, был введен в католических странах папой римским Григорием XIII 4 октября 1582 года взамен прежнего юлианского календаря, и следующим днем после четверга 4 октября стала пятница 15 октября. Согласно григорианскому календарю продолжительность года равна 365,2425 суток и 97 из 400 лет - високосные.

В современную эпоху Солнце расположено вблизи внутренней стороны рукава Ориона, перемещаясь внутри Местного Межзвездного Облака (ММО), заполненного разреженным горячим газом, возможно остатком взрыва сверхновой. Эту область называют галактической обитаемой зоной. Солнце движется в Млечном Пути (относительно других близких звезд) по направлению к звезде Вега в созвездии Лира под углом приблизительно 60 градусов от направления к галактическому центру; его называют движением к апексу.

Интересно, что, так как наша Галактика также перемещается относительно космического микроволнового фонового излучения (CMB- Cosmic Microvawe Background) со скоростью 550 км/с в направлении созвездия Гидры, результирующая (остаточная) скорость Солнца относительно CMB составляет около 370 км/с и направлена к созвездию Льва. Заметим, что Солнце в своем движении испытывает небольшие возмущения от планет, прежде всего Юпитера, образуя с ним общий гравитационный центр Солнечной системы - барицентр, расположенный в пределах радиуса Солнца. Каждые несколько сотен лет барицентрическое движение переключается от прямого (проградного) к обратому (ретроградному).

* Согласно теории звездной эволюции, менее массивные звезды, чем Т Тельца, также переходят к MS по этому треку.

Солнце сформировалось примерно 4,5 млрд лет назад, когда быстрое сжатие облака молекулярного водорода под действием гравитационных сил привело к образованию в нашей области Галактики переменной звезды первого типа звездного населения - звезды типа T Тельца (T Tauri). После начала в солнечном ядре реакций термоядерного синтеза (превращения водорода в гелий) Солнце перешло на главную последовательность диаграммы Герцшпрунга–Рассела (ГР). Солнце классифицируется как желтая карликовая звезда класса G2V, которая кажется желтой при наблюдении с Земли из-за небольшого избытка желтого света в ее спектре, вызванного рассеянием в атмосфере синих лучей. Римская цифра V в обозначении G2V означает, что Солнце принадлежит главной последовательности ГР-диаграммы. Как предполагают, в самый ранний период эволюции, до момента перехода на главную последовательность, оно находилось на так называемом треке Хаяши, где сжималось и, соответственно, уменьшало светимость при сохранении примерно той же самой температуры*. Следуя эволюционному сценарию, типичному для звезд низкой и средней массы, находящихся на главной последовательности, Солнце прошло примерно половину пути активной стадии своего жизненного цикла (превращения водорода в гелий в реакциях термоядерного синтеза), составляющего в общей сложности примерно 10 млрд лет, и сохранит эту активность в течение последующих приблизительно 5 млрд лет. Солнце ежегодно теряет 10 14 своей массы, а суммарные потери на протяжении всей его жизни составят 0,01%.

По своей природе Солнце - плазменный шар диаметром приблизительно 1,5 млн км. Точные значения его экваториального радиуса и среднего диаметра составляют соответственно 695 500 км и 1 392 000 км. Это на два порядка больше размера Земли и на порядок больше размера Юпитера. […] Солнце вращается вокруг своей оси против часовой стрелки (если смотреть с Северного полюса мира), скорость вращения внешних видимых слоев составляет 7 284 км/час. Сидерический период вращения на экваторе равен 25,38 сут., в то время как период на полюсах намного длиннее - 33,5 сут., т. е. атмосфера на полюсах вращается медленнее, чем на экваторе. Это различие возникает из-за дифференциального вращения, вызванного конвекцией и неравномерным переносом масс из ядра наружу, и связано с перераспределением углового момента. При наблюдении с Земли кажущийся период вращения составляет приблизительно 28 дней. […]

Фигура Солнца почти сферическая, ее сплюснутость незначительная, всего 9 миллионных долей. Это означает, что его полярный радиус меньше экваториального только на ≈10 км. Масса Солнца равна ≈330 000 масс Земли […]. Солнце заключает в себе 99,86% массы всей Солнечной системы. […]

Спустя примерно 1 млрд лет после выхода на Главную последовательность (по оценкам между 3,8 и 2,5 млрд лет тому назад) яркость Солнца увеличилась примерно на 30%. Совершенно очевидно, что с изменением светимости Солнца напрямую связаны проблемы климатической эволюции планет. Особенно это касается Земли, температура на поверхности которой, необходимая для сохранения жидкой воды (и, вероятно, происхождения жизни), могла быть достигнута только за счет более высокого содержания в атмосфере парниковых газов, чтобы компенсировать низкую инсоляцию. Эта проблема носит название «парадокса молодого Солнца». В последующий период яркость Солнца (также как и его радиус) продолжали медленно расти. По существующим оценкам, Солнце становится приблизительно на 10% ярче каждые один миллиард лет. Соответственно, поверхностные температуры планет (включая температуру на Земле) медленно повышаются. Примерно через 3,5 млрд лет от настоящего времени яркость Солнца возрастет на 40%, и к этому времени условия на Земле будут подобны условиям на сегодняшней Венере. […]

К концу своей жизни Солнце перейдет в состояние красного гиганта. Водородное топливо в ядре будет исчерпано, его внешние слои сильно расширятся, а ядро сожмется и нагреется. Водородный синтез продолжится вдоль оболочки, окружающей гелиевое ядро, а сама оболочка будет постоянно расширяться. Будет образовываться все большее количество гелия, и температура ядра будет расти. При достижении в ядре температуры ≈100 миллионов градусов начнется горение гелия с образованием углерода. Это, вероятно, заключительная фаза активности Солнца, поскольку его масса недостаточна для начала более поздних стадий ядерного синтеза с участием более тяжелых элементов - азота и кислорода. Из-за сравнительно небольшой массы жизнь Солнца не окончится взрывом сверхновой звезды. Вместо этого будут происходить интенсивные тепловые пульсации, которые заставят Солнце сбросить внешние оболочки, и из них образуется планетарная туманность. В ходе дальнейшей эволюции образуется очень горячее вырожденное ядро-белый карлик, лишенный собственных источников термоядерной энергии, с очень высокой плотностью вещества, который будет медленно охлаждаться и, как предсказывает теория, через десятки миллиардов лет превратится в невидимый черный карлик. […]

Солнечная активность

Солнце проявляет различные виды активности, его внешний вид постоянно изменяется, как свидетельствуют многочисленные наблюдения с Земли и из космоса. Самым известным и наиболее выраженным является 11-летний цикл солнечной активности, которая ориентировочно соответствует числу солнечных пятен на поверхности Солнца. Протяженность солнечных пятен может достигать в поперечнике десятков тысяч километров. Обычно они существуют в виде пар с противоположной магнитной полярностью, которая чередуется каждый солнечный цикл и достигает пика в максимуме активности вблизи солнечного экватора. Как уже упоминалось, солнечные пятна темнее и холоднее, чем окружающая поверхность фотосферы, потому что они являются областями пониженной энергии конвективного переноса из горячих недр, подавляемого сильными магнитными полями. Полярность магнитного диполя Солнца меняется каждые 11 лет таким образом, что северный магнитный полюс становится южным, и наоборот. Помимо изменения солнечной активности внутри 11-летнего цикла, определенные изменения наблюдаются от цикла к циклу, поэтому выделяют также 22-годичные и более длинные циклы. Нерегулярность цикличности проявляется в виде растянутых периодов минимума солнечной активности с минимальным числом солнечных пятен в течение нескольких циклов, подобно наблюдавшейся в семнадцатом столетии. Этот период известен как Маундеровский минимум, который оказал сильное воздействие на климат Земли. Некоторые ученые полагают, что, в этот период Солнце проходило через 70-летний период активности с почти полным отсутствием солнечных пятен. Напомним, что необычный солнечный минимум был отмечен в 2008 г. Он продолжался намного дольше и с более низким числом солнечных пятен, чем обычно. Это означает, что повторяемость солнечной активности на протяжении десятков и сотен лет является, вообще говоря, неустойчивой. Кроме того, теория предсказывает возможность существования магнитной неустойчивости в ядре Солнца, которая может вызывать колебания активности с периодом в десятки тысяч лет. […]

Наиболее характерными и зрелищными проявлениями солнечной активности являются солнечные вспышки, выбросы корональной массы (CME) и солнечные протонные события (SPE). Степень их активности тесно связана с 11-летним солнечным циклом. Эти явления сопровождаются выбросами огромного количества протонов и электронов высоких энергий, значительно повышая энергию «более спокойных» частиц солнечного ветра. Они оказывают громадное влияние на процессы взаимодействия солнечной плазмы с Землей и другими телами Солнечной системы, в том числе на вариации геомагнитного поля, верхнюю и среднюю атмосферу, явления на земной поверхности. Состояние солнечной активности определяет космическую погоду, которая влияет на нашу природную среду и на жизнь на Земле. […]

По существу вспышка является взрывом, и это грандиозное явление проявляется как мгновенное и интенсивное изменение яркости в активной области на поверхности Солнца. […] выделение энергии мощной солнечной вспышки может достигать […] ⅙ энергии, выделяемой Солнцем в секунду, или 160 млрд мегатонн в тротиловом эквиваленте. Примерно половину этой энергии составляет кинетическая энергия корональной плазмы, а другую половину - жесткое электромагнитное излучение и потоки высокоэнергичных заряженных частиц.

«Примерно через 3,5 млрд лет яркость Солнца возрастет на 40%, и к этому времени условия на Земле будут подобны условиям на сегодняшней Венере»

Вспышка может продолжаться около 200 минут, сопровождаясь сильными изменениями интенсивности рентгеновского излучения и мощным ускорением электронов и протонов, скорость которых приближается к скорости света. В отличие от солнечного ветра, частицы которого распространяются до Земли более суток, частицы, генерируемые во время вспышек, достигают Земли за десятки минут, сильно возмущая космическую погоду. Эта радиация чрезвычайно опасна для космонавтов, даже находящихся на околоземных орбитах, не говоря уже о межпланетных перелетах.

Еще более грандиозными являются выбросы корональной массы, представляющие собой наиболее мощное явление в Солнечной системе. Они возникают в короне в виде взрывов огромных объемов солнечной плазмы, вызываемых пересоединением силовых линий магнитного поля, в результате чего происходит выделение огромной энергии. Некоторые из них связаны с солнечными вспышками или имеют отношение к солнечным протуберанцам, извергаемым с солнечной поверхности и удерживаемым магнитными полями. Выбросы корональной массы случаются периодически и состоят из очень энергичных частиц. Сгустки плазмы, образующие гигантские плазменные пузыри, расширяющиеся наружу, выбрасываются в космическое пространство. Они заключают в себе миллиарды тонн материи, распространяющейся в межпланетной среде со скоростью ≈1000 км/с и образующей на фронте отошедшую ударную волну. Выбросы корональной массы ответственны за мощные магнитные бури на Земле. […] С корональными выбросами еще больше, чем с солнечными вспышками, связан приток высокоэнергичной проникающей радиации. […]

Взаимодействие солнечной плазмы с планетами и малыми телами оказывает на них сильное влияние, прежде всего на верхнюю атмосферу и магнитосферу-собственную или индуцированную, в зависимости от того, обладает ли планета магнитным полем. Такое взаимодействие называют солнечно-планетными (для Земли-солнечно-земными) связями, существенно зависящими от фазы 11-летнего цикла и других проявлений солнечной активности. Они приводят к изменениям формы и размеров магнитосферы, возникновению магнитных бурь, вариациям параметров верхней атмосферы, росту уровня радиационной опасности. Так, температура верхней атмосферы Земли в диапазоне высот 200–1000 км возрастет в несколько раз, от ≈400 до ≈1500K, а плотность изменяется на один–два порядка величины. Это сильно влияет на время жизни искусственных спутников и орбитальных станций. […]

Наиболее зрелищным проявлением воздействия солнечной активности на Землю и другие планеты с магнитным полем являются полярные сияния, наблюдаемые на высоких широтах. На Земле возмущения на Солнце приводят также к нарушению радиосвязи, воздействию на высоковольтные линии электропередач (блэкауты), подземные кабели и трубопроводы, работу радиолокационных станций, а также повреждают электронику космических аппаратов.