Основные формулы по физике - колебания и волны. Свободные затухающие колебания Затухающие колебания в среде с сопротивлением

И получите два бесплатных урока в школе английского языка SkyEng!
Занимаюсь там сам - очень круто. Прогресс налицо.

В приложении можно учить слова, тренировать аудирование и произношение.

Попробуйте. Два урока бесплатно по моей ссылке!
Жмите

Затухание колебаний

Свободные колебания в реальных условиях не могут продолжаться вечно. Для механических систем всегда имеет место сопротивление среды, вследствие чего энергия движения объекта рассеивается при трении. В электромагнитных контурах колебания затухают за счет сопротивления проводников.

Уравнение затухающих колебаний

Уравнение затухающих колебаний описывает движение реальных колебательных систем. В дифференциальной форме оно записывается следующим образом:

Из этого выражения можно получить еще одну каноническую форму:

Здесь x и t – координаты пространства и времени, А – первоначальная амплитуда. – коэффициент затухания, который зависит от сопротивления среды r и массы колеблющегося объекта m:

Чем больше сопротивление среды, тем больше энергии рассеивается при вязком трении. И наоборот – чем больше масса (а значит, инерционность) тела, тем дольше оно будет продолжать движение.

Циклическая частота свободных колебаний (такой же системы, но без трения) учитывает силу упругости в системе (например, жесткость пружины k):

Строго говоря, в случае затухающих колебаний нельзя говорить про период – время между повторяющимися движениями системы постоянно увеличивается. Однако если колебания затухают медленно, для них с достаточной точностью можно определить период Т:

Циклическая частота затухающих колебаний

Еще одна характеристика затухающих колебаний – циклическая частота:

Время релаксации – это коэффициент, показывающий, за какое время амплитуда колебаний уменьшится в е раз:

Отношение амплитуды изменяющейся величины в двух последовательных периодах называют декрементом затухания:

Эту же характеристику при расчетах часто представляют в виде логарифма:

Добротность Q характеризует, насколько силы упругости системы превышают силы сопротивления среды, препятствуя диссипации энергии:

Примеры решения задач

ПРИМЕР 1

Задание После того, как к пружине подвесили груз, она растянулась на 9,8 см. Пружина колеблется в вертикальном направлении, . Определить период колебаний.
Решение Так как пружина растягивается под весом, то на нее действует сила тяжести:

Силе тяжести противодействует сила упругости пружины:

Из двух выражений найдём коэффициент упругости:

Подставим коэффициент упругости в формулу для периода затухающих колебаний:

Зная, что логарифмический декремент затухания выразим из него неизвестную величину , подставим в знаменатель формулы и выразим Т:

Ответ

Причина затухания заключается в том, что во всякой колебательной системе, кроме возвращающей силы, всегда действуют разного рода , сопротивление воздуха

и т. п., которые тормозят движение. При каждом размахе часть расходуется на работу против сил трения. В конечном итоге на эту работу уходит весь запас энергии, сообщенный колебательной системе первоначально.

Рассматривая , мы имели дело с идеальными, строго периодическими собственными колебаниями. Описывая при помощи такой модели реальные колебания, мы сознательно допускаем неточность в описании. Однако подобное упрощение является пригодным в силу того, что у многих колебательных систем затухания колебаний, вызванные трением, действительно малы: система успевает совершить много колебаний прежде, чем их уменьшится заметным образом.

Графики затухающих колебаний

При наличии затухания собственное колебание (рис.1) перестает быть гармоническим. Более того, затухающее колебание перестает быть периодическим процессом — трение влияет не только на амплитуду колебаний (то есть является причиной затухания), но и на продолжительность размахов. С увеличением трения время, необходимое системе для совершения одного полного колебания, увеличивается. График затухающих колебаний представлен на рис. 2.

Рис.1. График свободных гармонических колебаний


Рис.2. График затухающих колебаний

Характерной чертой колебательных систем является то, что небольшое трение влияет на период колебаний в гораздо меньшей степени, чем на амплитуду. Это обстоятельство сыграло огромную роль в усовершенствовании часов. Первые часы с построил голландский физик и математик Христиан Гюйгенс в 1673 г. Этот год можно считать датой рождения современных часовых механизмов. Ход часов с маятником мало чувствителен к изменениям, обусловленным трением, которые в общем случае зависят от многих факторов, в то время как скорость хода предшествующих безмаятниковых часов очень сильно зависела от трения.

На практике возникает потребность как в уменьшении, так и в увеличении затухания колебаний. К примеру, при конструировании часовых механизмов стремятся уменьшить затухание колебаний балансира часов. Для этого ось балансира снабжают острыми наконечниками, которые упираются в хорошо отполированные конические подпятники, выполненные из твердого камня (агата или рубина). Наоборот, во многих измерительных приборах очень желательно, чтобы подвижная часть устройства устанавливалась в процессе измерений быстро, но совершая большого числа колебаний. Для увеличения затухания в этом случае применяют различные демпферы – устройства, увеличивающие трение и, в общем случае, потерю энергии.

Все реальные колебательные системы являются диссипативными. Энергия механических колебаний системы с течением времени расходуется на работу против сил трения, поэтому собственные колебания всегда затухают – их амплитуда постепенно уменьшается. Потеря энергии происходит и при деформациях тел, так как вполне упругих тел не существует, а деформации не вполне упругих тел сопровождаются частичным переходом механической энергии в энергию хаотического теплового движения частиц этих тел.

Во многих случаях в первом приближении можно считать, что при небольших скоростях движения силы, вызывающие затухание механических колебаний, пропорциональны величине скорости. Будем называть эти силы, независимо от их происхождения, силами трения или сопротивления и вычислять их по следующей формуле: . Здесь r – коэффициент сопротивления среды, – скорость движения тела. Знак минус указывает на то, что силы трения всегда направлены в сторону, противоположную направлению движения тела.

Запишем уравнение второго закона Ньютона для затухающих прямолинейных колебаний пружинного маятника

Здесь: m – масса груза, k – жесткость пружины, – проекция скорости на ось ОХ, – проекция ускорения на ось ОХ. Поделим обе части уравнения (13) на массу m и перепишем его в виде:

. (14)

Введем обозначения:

, (15)

. (16)

Назовем коэффициентом затухания, а мы ранее назвали собственной циклической частотой. С учетом введенных обозначений (15 и 16) уравнение (14) запишется

. (17)

Это дифференциальное уравнение затухающих колебаний любой природы. Вид решения этого линейного дифференциального уравнения второго порядка зависит от соотношения между величиной – собственной частотой незатухающих колебаний и коэффициентом затухания .

Если трение очень велико (в этом случае ), то система, выведенная из положения равновесия, возвращается в него, не совершая колебаний («ползет»). Такое движение (кривая 2 на рис.3) называют апериодическим.

Если же в начальный момент система с большим трением находится в положении равновесия и ей сообщается некоторая начальная скорость , то система достигает наибольшего отклонения от положения равновесия , останавливается и после этого смещение асимптотически стремится к нулю (рис.4).



Рис.3 Рис.4

Если система выведена из положения равновесия при условии и отпущена без начальной скорости, то система также не переходит положения равновесия. Но в этом случае время практического приближения к нему оказывается меньше, чем в случае большого трения (кривая 1 на рис 3). Такой режим называется критическим и к нему стремятся при использовании различных измерительных приборов (для быстрейшего отсчета показаний).



при малом трении (в этом случае ) движение носит колебательный характер (рис.5) и решение уравнения (17) имеет вид:

(19)

описывает изменение амплитуды затухающих колебаний со временем. Амплитуда затухающих колебаний уменьшается с течением времени (рис.5) и тем быстрее, чем больше коэффициент сопротивления и чем меньше масса колеблющегося тела, то есть чем меньше инертность системы.


Рис.5

Величину

называют циклической частотой затухающих колебаний. Затухающие колебания представляют собой непериодические колебания, так как в них никогда не повторяются, например, максимальные значения смещения, скорости и ускорения. Поэтому назвать частотой можно лишь условно в том смысле, что она показывает, сколько раз за секунд колеблющаяся система проходит через положение равновесия. По этой же причине величину

(21)

можно назвать условным периодом затухающих колебаний .

Для характеристики затухания введем следующие величины:

Логарифмический декремент затухания;

Время релаксации;

Добротность.

Отношение двух любых последовательных смещений, разделенных во времени одним периодом называют декрементом затухания .

Логарифмическим декрементом затухания называется натуральный логарифм отношения значений амплитуды затухающих колебаний в моменты времени t и t+T (натуральный логарифм отношение двух любых последовательных смещений, разделенных во времени одним периодом):

Поскольку и , то .

Воспользуемся формулой зависимости амплитуды от времени (19) и получим

Выясним физический смысл величин и . Обозначим через промежуток времени, за который амплитуда затухающих колебаний убывает в е раз и назовем его временем релаксации . Тогда . отсюда следует, что

§6 Затухающие колебания

Декремент затухания. Логарифмический декремент затухания.

Свободные колебания технических систем в реальных условиях протекают, когда на них действуют силы сопротивления. Действие этих сил приводит к уменьшению амплитуды колеблющейся величины.

Колебания, амплитуда которых из-за потерь энергии реальной колебательной системы уменьшается с течением времени, называются затухающими .

Наиболее часто встречается случаи, когда сила сопротивления пропорциональна скорости движения

где r - коэффициент сопротивления среды. Знак минус показывает, что F C направлена в сторону противоположную скорости.

Запишем уравнение колебаний в точке, колеблющийся в среде, коэффициент сопротивлений которой r . По второму закону Ньютона

где β - коэффициент затухания. Этот коэффициент характеризует скорость затухания колебаний, При наличии сил сопротивления энергия колеблющейся системы будет постепенно убывать, колебания будут затухать.

- дифференциальное уравнение затухающих колебаний.

Уравнение затухающих колебаний.

ω - частота затухающих колебаний:

Период затухающих колебаний:

Затухающие колебания при строгом рассмотрении не являются периодическими. Поэтому о периоде затухаюших колебаний можно гово-рить, когда β мало.

Если затухания выражены слабо (β→0), то . Затухающие колебания можно

рассматривать как гармонические колебания, амплитуда которых меняется по экспоненциальному закону

В уравнении (1) А 0 и φ 0 - произвольные константы, зависящие от выбора момента времени, начиная е которого мы рассматриваем колебания

Рассмотрим колебание в течение, некоторого времени τ, за которое амплитуда уменьшится в е раз

τ - время релаксации.

Коэффициент затихания β обратно пропорционален времени, в течение которого амплитуда уменьшается в е раз. Однако коэффициента затухания недостаточна для характеристики затуханий колебаний. Поэтому необходимо ввести такую характеристику для затухания колебаний, в которую входит время одного колебаний. Такой характеристикой является декремент (по-русски: уменьшение) затухания D , который равен отношению амплитуд, отстоящих по времени на период:

Логарифмический декремент затухания равен логарифму D :

Логарифмический декремент затухания обратно пропорционален числу колебаний, в результате которых амплитуда колебаний умень-шилась в е раз. Логарифмический декремент затухания - постоянная для данной системы величина.

Еще одной характеристикой колебательной система является добротность Q .

Добротность пропорциональна числу колебаний, совершаемых системой, за время релаксации τ.

Q колебательной системы является мерой относительной диссипации (рассеивания) энергии.

Q колебательной системы называется число, показывающее во сколько раз сила упругости больше силы сопротивления.

Чем больше добротность, тем медленнее происходит затухание, тем затухающие колебания ближе к свободным гармоническим.

§7 Вынужденные колебания.

Резонанс

В целом ряде случаев возникает необходимость создания систем, совершающих незатухающие колебания. Получить незатухающие колебания в системе можно, если компенсировать потери энергии, воздействуя на систему периодически изменяющейся силой.

Пусть

Запишем выражение для уравнения движения материальной точки, совершающей гармоническое колебательное движение под действием вынуждающей силы.

По второму закону Ньютона:

(1)

Дифференциальное уравнение вынуж-денных колебаний.

Это дифференциальное уравнение является линейным неоднородным.

Его решение равно сумме общего решения однородного уравнения и частного решения неоднородного уравнения:

Найдем частное решение неоднородного уравнения. Для этого перепишем уравнение (1) в следующем виде:

(2)

Частное решение этого уравнения будем искать в виде:

Тогда

Подставим в (2):

т.к. выполняется для любого t , то должно выполняться равенство γ = ω , следовательно,

Это комплексное число удобно представить в виде

где А определяется по формуле (3 ниже), а φ - по формуле (4), следовательно, решение (2),в комплексной форме имеет вид

Его вещественная часть, являвшаяся решением уравнения (1) равна:

где

(3)

(4)

Слагаемое Х о.о. играет существенную роль только в начальной стадии при установлении колебаний до тех пор, пока амплитуда вынужденных колебаний не достигнет значения определяемого равенством (3). В установившемся режиме вынужденные колебания происходят с частотой ω и являются гармоническими. Амплитуда (3) и фаза (4) вынужденных колебаний зависят от частоты вынуждающей силы. При определенной частоте вынуждающей силы амплитуда может достигнуть очень больших значений. Резкое возрастание амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к собственной частоте механи-ческой системы, называется резонансом .

Частота ω вынуждающей силы, при которой наблюдается резонанс, называется резонансной. Для того чтобы найти значение ω рез, необходимо найти условие максимума амплитуды. Для этого нужно определить условие минимума знаменателя в (3) (т.е. исследовать (3) на экстремум).

Зависимость амплитуды колеблющейся величины от частоты вынуждающей силы называется резонансной кривой . Резонансная кривая будет тем выше, чем меньше коэффициент затухания β и с уменьшением β, максимум резонансных кривых смешается вправо. Если β = 0, то

ω рез = ω 0 .

При ω→0 все кривые приходят к значению - статическое отклонение.

Параметрический резонанс возникает в том случае, когда периодическое изменение одного из параметров система приводит к резкому увеличению амплитуды колеблющейся системы. Например, кабины, делающие "солнышко" за счет изменения положения центра тяжести система.(То же в "лодочках".) См. §61 .т. 1 Савельев И.В.

Автоколебаниями называются такие колебания, энергия которых периодически пополняется в результате воздействия самой системы за счет источника энергии, находящегося в этой же системе. См. §59 т.1 Савельев И.В.