Уравнение линии на плоскости. Понятие уравнения линии условие перпендикулярности прямых

определяет на плоскости кривую. Группа членов называется квадратичной формой, – линейной формой. Если в квадратичной форме содержатся только квадраты переменных, то такой ее вид называется каноническим, а векторы ортонормированного базиса, в котором квадратичная форма имеет канонический вид, называются главными осями квадратичной формы.
Матрица называется матрицей квадратичной формы. Здесь a 1 2 =a 2 1 . Чтобы матрицу B привести к диагональному виду, необходимо за базис взять собственные векторы этой матрицы, тогда , где λ 1 и λ 2 – собственные числа матрицы B.
В базисе из собственных векторов матрицы B квадратичная форма будет иметь канонический вид: λ 1 x 2 1 +λ 2 y 2 1 .
Эта операция соответствует повороту осей координат. Затем производится сдвиг начала координат, избавляясь тем самым от линейной формы.
Канонический вид кривой второго порядка: λ 1 x 2 2 +λ 2 y 2 2 =a , причем:
а) если λ 1 >0; λ 2 >0 – эллипс, в частности, при λ 1 =λ 2 это окружность;
б) если λ 1 >0, λ 2 <0 (λ 1 <0, λ 2 >0) имеем гиперболу;
в) если λ 1 =0 либо λ 2 =0, то кривая является параболой и после поворота осей координат имеет вид λ 1 x 2 1 =ax 1 +by 1 +c (здесь λ 2 =0). Дополняя до полного квадрата, будем иметь: λ 1 x 2 2 =b 1 y 2 .

Пример . Дано уравнение кривой 3x 2 +10xy+3y 2 -2x-14y-13=0 в системе координат (0,i,j), где i =(1,0) и j =(0,1).
1. Определить тип кривой.
2. Привести уравнение к каноническому виду и построить кривую в исходной системе координат.
3. Найти соответствующие преобразования координат.

Решение . Приводим квадратичную форму B=3x 2 +10xy+3y 2 к главным осям, то есть к каноническому виду. Матрица этой квадратичной формы . Находим собственные числа и собственные векторы этой матрицы:

Характеристическое уравнение:
; λ 1 =-2, λ 2 =8. Вид квадратичной формы: .
Исходное уравнение определяет гиперболу.
Заметим, что вид квадратичной формы неоднозначен. Можно записать 8x 1 2 -2y 1 2 , однако тип кривой остался тот же – гипербола.
Находим главные оси квадратичной формы, то есть собственные векторы матрицы B. .
Собственный вектор, отвечающий числу λ=-2 при x 1 =1: x 1 =(1,-1).
В качестве единичного собственного вектора принимаем вектор , где – длина вектора x 1 .
Координаты второго собственного вектора, соответствующего второму собственному числу λ=8, находим из системы
.
1 ,j 1).
По формулам (5) пункта 4.3.3. переходим к новому базису:
или

; . (*)


Вносим выражения x и y в исходное уравнение и, после преобразований, получаем: .
Выделяем полные квадраты : .
Проводим параллельный перенос осей координат в новое начало: , .
Если внести эти соотношения в (*) и разрешить эти равенства относительно x 2 и y 2 , то получим: , . В системе координат (0*, i 1 , j 1) данное уравнение имеет вид: .
Для построения кривой строим в старой системе координат новую: ось x 2 =0 задается в старой системе координат уравнением x-y-3=0, а ось y 2 =0 уравнением x+y-1=0. Начало новой системы координат 0 * (2,-1) является точкой пересечения этих прямых.
Для упрощения восприятия разобьем процесс построения графика на 2 этапа:
1. Переход к системе координат с осями x 2 =0, y 2 =0, заданными в старой системе координат уравнениями x-y-3=0 и x+y-1=0 соответственно.

2. Построение в полученной системе координат графика функции.

Окончательный вариант графика выглядит следующим образом (см. Решение :Скачать решение

Задание . Установить, что каждое из следующих уравнений определяет эллипс, и найти координаты его центра С, полуоси, эксцентриситет, уравнения директрис. Изобразить эллипс на чертеже, указав оси симметрии, фокусы и директрисы.
Решение .

Таким образом, агип. = с/2 = 2 и bгип.2 = с2 – агип.2 = 16 – 4 = 12. x2 y2 Уравнение искомой гиперболы имеет вид: − = 1. 4 12 Задача 11. Составить уравнение параболы, если известны ее фокус F(-7, 0) и уравнение директрисы x – 7 = 0. Решение Из уравнения директрисы имеем x = -p/2 = 7 или p = -14. Таким образом, уравнение искомой параболы 2 y = -28x. Задача 12. Установить, какие линии определяются следующими уравнениями. Сделать чертежи. 3 2 1. y = 7 − x − 6 x + 13, y < 7, x ∈ R. 2 Решение 3 2 y−7=− x − 6 x + 13. Возводим обе части 2 уравнения в квадрат: 9 2 (y − 7) 2 = 4 (x − 6 x + 13) или 4 (y − 7) = (x 2 − 6 x + 13). 2 9 Выделяем в правой части полный квадрат: 4 (x − 3) 2 (y − 7) 2 (y − 7) = (x − 3) + 4 или 2 2 − = −1. 9 4 9 Это – сопряженная гипербола. О′(3, 7), полуоси а = 2, b = 3. Заданное же уравнение определяет ветвь гиперболы, расположенную под прямой y – 7 = 0, т.к. y < 7. 1 y +1 2. x = 1 − . 2 2 Решение Область допустимых значений (х, у) определяется условиями ⎧ y +1 ⎪ ≥ 0, ⎧ y ≥ −1, ⎨ 2 → ⎨ ⎪ 1 − x ≥ 0, ⎩ x ≤ 1. ⎩ (y + 1)/2 = 4⋅(1 – x)2 → y + 1 = 8⋅(1 – x)2. Искомая кривая – часть параболы с вершиной в точке (1, -1). 41 3. y = −2 − 9 − x 2 + 8 x . Решение Искомая кривая – часть окружности: (y + 2)2 + (x – 4)2 = 52, y ≤ -2, x ∈ [-1, 9]. 4. y2 – x2 = 0. y Решение y=-x y=x (y – x)⋅(y + x) = 0 – две пересекающиеся прямые. x 0 Задача 13. Какую линию определяет уравнение x2 + y2 = x? Решение Запишем уравнение в виде x2 – x + y2 = 0. Выделим полный квадрат из слагаемых, содержащих х: x2 – x = (x – 1/2)2 – 1/4. 2 ⎛ 1⎞ 1 Уравнение принимает вид ⎜ x − ⎟ + y 2 = ⎝ 2⎠ 4 и определяет окружность с центром в точке (1/2, 0) и радиусом 1/2. Задача 14. Преобразовать уравнение x2 – y2 = a2 поворотом осей на 45° против часовой стрелки. Решение Так как α = -45°, то cos α = 2 2, sin α = − 2 2. Отсюда преобразование поворота принимает вид (см. п.4.2): ⎧ x = 2 2 ⋅ (x′ + y′) , ⎪ ⎨ ⎪ y = 2 2 ⋅ (y′ − x′) . ⎩ Подстановка в исходное уравнение дает х′у′ = а2/2. Проиллюстрируем приведение общих уравнений прямых второго порядка к каноническому виду на нескольких примерах, иллюстрирующих разные схемы преобразований. Задача 15. Привести уравнение 5x2 + 9y2 – 30x + 18y + 9 = 0 к каноническому виду и построить кривую. Решение Сгруппируем члены этого уравнения, содержащие одноименные координаты: (5x2 – 30x) + (9y2 + 18y) +9 = 0, или 5(x2 – 6x) + 9(y2 + 2y) +9 = 0. 42 y y′ Дополняем члены в скобках до полных квадратов: x 5(x2 – 6x + 9 – 9) + 9(y2 + 2y + 1 – 1) +9 = 0, или 0 5(x – 3)2 + 9(y + 1)2 = 45. 01 x′ Обозначаем x′ = x – 3, y′ = y + 1, x0 = 3, y0 = -1, то есть точка О1(3, -1) – центр кривой. Уравнение в новой системе координат принимает вид: x′2 y′2 5 x′ + 9 y′ = 45 → 2 2 + = 1 и определяет эллипс с полуосями 9 5 а = 3, b = 5,который в исходной системе координат имеет центр в точке О1(3, -1). 5 2 3 7 Задача 16. Определить вид кривой x + xy + y 2 = 2. 4 2 4 Решение Определим угол поворота осей по формуле (7) п.4.4: π 5 7 A = ,C = , B = 4 4 4 3 1 , A ≠ C и ϕ = arctg 2 2B 1 (= arctg − 3 = − . A−C 2 6) Подвергнем уравнение кривой преобразованию: ⎧ 3 1 ⎪ x = x′ cos ϕ − y′ sin ϕ = x′ ⎪ + y′ , 2 2 ⎨ ⎪ y = x′ sin ϕ + y′ cos ϕ = − x′ 1 + y′ 3 ⎪ ⎩ 2 2 и получим уравнение эллипса 2 2 5⎛ 3 1⎞ 3⎛ 3 1 ⎞⎛ 1 3 ⎞ 7⎛ 1 3 ⎞ ⎜ x′ + y′ ⎟ + ⎜ x′ + y′ ⎟⎜ − x′ + y′ ⎟ + ⎜ − x′ + y′ ⎟ = 2 . 4⎝ 2 2⎠ 2 ⎝ 2 2 ⎠⎝ 2 2 ⎠ 4⎝ 2 2 ⎠ x′ 2 + 2y′ 2 = 2. Задача 17. Установить, какую линию определяет уравнение x2 + y2 + xy – 2x + 3y = 0. Решение Перенесем начало координат в такую точку О1(х0, у0), чтобы уравнение не содержало х′ и у′ в первой степени. Это соответствует преобразованию координат вида (см. п.4.1): ⎧ x = x′ + x0 , ⎨ ⎩ y = y′ + y0 . Подстановка в исходное уравнение дает (x′ + x0)2 + (x′ + x0)(y′ + y0) + (y′ + y0)2 – 2(x′ + x0) + 3(y′ + y0) = 0 или x′2 + x′y′ + y′2 + (2x0 + y0 - 2)x′ + (x0 + 2y0 + 3)y′ + x02 + x0y0 + y02 - 2x0 + 3y0 =0. Положим 2x0 + y0 – 2 = 0, x0 + 2y0 + 3 = 0. 43 Решение полученной системы уравнений: x0 = 7/3 и y0 = -8/3. Таким образом, координаты нового начала координат O1(7/3, -8/3), а уравнение принимает вид x′2 + x′y′ + y′ 2 = 93/25. Повернем оси координат на такой угол α, чтобы исчез член х′у′. Подвергнем последнее уравнение преобразованию (см. п.4.2): ⎧ x′ = x′′ cos α − y′′ sin α, ⎨ ⎩ y′ = x′′ sin α + y′′ cos α и получим (cos2α + sinα⋅cosα + sin2α)⋅x′′2 + y ′′ y y′ x′′ (cos2α - sin2α)⋅x′′y′′ + 0 x + (sin2α - sinα⋅cosα + cos2α)⋅y′′ 2 = 93/25. Полагая cos2α - sin2α = 0, имеем tg2α = 1. α x′ Следовательно, α1,2 = ±45°. Возьмем α = 45°, cos45° = sin45° = 2 2 . 01 После соответствующих вычислений получаем 3 2 1 2 93 x ′′ + y ′′ = . 2 2 25 x′′2 y′′2 Итак, + =1 62 25 186 25 – уравнение эллипса с полуосями a = 62 5 ≈ 1,5; b = 186 5 ≈ 2,7 в дважды штрихованной системе координат, получаемой из исходной параллельным переносом осей координат в точку О1(7/3, -8/3) и последующим поворотом на угол 45° против часовой стрелки. Уравнение x2 + y2 + xy – 2x + 3y = 0 приведено к каноническому виду x′′2 y′′2 + 2 = 1. a2 b Задача 18. Привести к каноническому виду уравнение 4x2 – 4xy + y2 – 2x – 14y + 7 = 0. Решение Система уравнений для нахождения центра кривой (формула (6) п.4.4) ⎧ 4 x0 − 2 y0 − 1 = 0, ⎨ несовместна, ⎩ −2 x0 + y0 − 7 = 0 значит, данная кривая центра не имеет. Не меняя начала координат, повернем оси на некоторый угол α, соответствующие преобразования координат имеют ⎧ x = x′ cos α − y′ sin α, вид: ⎨ ⎩ y = x′ sin α + y′ cos α. 44 Перейдем в левой части уравнения к новым координатам: 4x2 – 4xy + y2 – 2x – 14y + 7 = (4cos2α - 4cosα⋅sinα + sin2α)⋅x′2 + + 2⋅(-4sinα⋅cosα - 2cos2α + 2sin2α + sinα⋅cosα)⋅x′y′ + + (4sin2α + 4sinα⋅cosα + cos2α)⋅y′2 + + 2⋅(-cosα - 7sinα)⋅x′ + 2⋅(sinα - 7cosα)⋅y′ + 7. (*) Постараемся теперь подобрать угол α так, чтобы коэффициент при х′у′ обратился в нуль. Для этого нам придется решить тригонометрическое уравнение -4sinα⋅cosα - 2cos2α + 2sin2α + sinα⋅cosα = 0. Имеем 2sin2α - 3sinα⋅cosα - 2cos2α = 0, или 2tg2α - 3tgα - 2 = 0. Отсюда tgα = 2, или tgα = -1/2. Возьмем первое решение, что соответствует повороту осей на острый угол. Зная tgα, вычислим cosα и sinα: 1 1 tg α 2 cos α = = , sin α = = . 1 + tg 2α 5 1 + tg 2α 5 Отсюда, и учитывая (*), находим уравнение данной кривой в системе х′,у′: 5 y′2 − 6 5 x′ − 2 5 y′ + 7 = 0. (**) Дальнейшее упрощение уравнения (**) производится при помощи параллельного перенесения осей Ох′, Оу′. Перепишем уравнение (**) следующим образом: 5 5(y′2 − 2 y′) − 6 5 x′ + 7 = 0. 5 Дополнив выражение в первой скобке до полного квадрата разности и компенсируя это дополнение надлежащим слагаемым, получим: 2 ⎛ 5⎞ 6 5⎛ 5⎞ ⎜ y′ − ⎟ − ⎜ x′ − ⎟ = 0. ⎝ 5 ⎠ 5 ⎝ 5 ⎠ Введем теперь еще новые координаты х′′,у′′, полагая x′ = x′′ + 5 5, y′ = y′′ + 5 5 , что соответствует параллельному перемещению осей на величину 5 5 в направлении оси Ох′ и на величину 5 5 в направлении оси Оу′. В координатах х′′у′′ уравнение данной линии принимает вид 6 5 2 y′′ = x′′ . 5 Это есть каноническое уравнение параболы с 3 5 параметром p = и с вершиной в начале координат системы х′′у′′. Парабола 5 расположена симметрично относительно оси х′′ и бесконечно простирается в 45 положительном направлении этой оси. Координаты вершины в системе х′у′ ⎛ 5 5⎞ ⎛ 1 3⎞ ⎜ ; ⎟ а в системе ху ⎜ − ; ⎟ . ⎝ 5 5 ⎠ ⎝ 5 5⎠ Задача 19. Какую линию определяет уравнение 4x2 - 4xy + y2 + 4x - 2y - 3 =0? Решение Система для нахождения центра кривой в данном случае имеет вид: ⎧ 4 x0 − 2 y0 + 2 = 0, y 2x-y+3=0 ⎨ 2x-y+1=0 ⎩ −2 x0 + y0 − 1 = 0. Эта система равносильна одному уравнению 2х0 – у0 2x-y-1=0 + 1 = 0, следовательно, линия имеет бесконечно много центров, составляющих прямую 2х – у + 1= 0. x Заметим, что левая часть данного уравнения 0 разлагается на множители первой степени: 4х2 – 4ху + у2 + 4х –2у –3 = = (2х – у +3)(2х – у – 1). Значит, рассматриваемая линия есть пара параллельных прямых: 2ху – у +3 = 0 и 2х – у – 1 = 0. Задача 20 1. Уравнение 5х2 + 6ху + 5у2 – 4х + 4у + 12 = 0 x′2 y′2 приводится к каноническому виду х′ 2 + 4у′ 2 + 4 = 0, или + = −1. 4 1 Это уравнение похоже на каноническое уравнение эллипса. Однако оно не определяет на плоскости никакого действительного образа, так как для любых действительных чисел х′,у′ левая часть его не отрицательна, а cправа стоит –1. Такое уравнение и аналогичные ему называются уравнениями мнимого эллипса. 2. Уравнение 5х2 + 6ху + 5у2 – 4х + 4у + 4 = 0 x′2 y′2 приводится к каноническому виду х′ 2 + 4у′ 2 = 0, или + = 0. 4 1 Уравнение также похоже на каноническое уравнение эллипса, но определяет не эллипс, а единственную точку: х′ = 0, у′ = 0. Такое уравнение и аналогичные ему называются уравнениями вырожденного эллипса. Задача 21. Составить уравнение параболы, если ее фокус находится в точке F(2, -1) и уравнение директрисы D: x – y – 1 = 0. Решение Пусть в некоторой системе координат х′О1у′ парабола имеет канонический вид у′2 = 2рх′. Если прямая у = х – 1 является ее директрисой, то оси системы координат х′О1у′ параллельны директрисе. 46 Координаты вершины параболы, совпадающей с новым началом координат О1, найдем как середину отрезка нормали к директрисе D, проходящей через фокус. Итак, ось О1х′ описывается уравнением у = -х + b, -1 = -2 + b. Откуда b = 1 и О1х′: у = -х + 1. Координаты точки K пересечения директрисы и оси О1х′ находим из условия: ⎧ y = x −1 ⎨ , → x К = 1, y K = 0. ⎩ y = −x + 1 Координаты нового начала координат О1(х0, у0): 1+ 2 3 −1 + 0 1 x0 = = ; y0 = = − . Оси новой системы координат повернуты 2 2 2 2 относительно старой на угол (-45°). Найдем р = KF = 2. Итак, уравнение параболы в старой системе координат получим, если подвергнем уравнение параболы y′ 2 = 2 2 ⋅x′ преобразованию (см. формулу (5) п.4.3): ⎧ ⎛ 3⎞ ⎛ 1⎞ ⎧ 2 ⎪ x′ = ⎜ x − 2 ⎟ cos(−45°) + ⎜ y + 2 ⎟ sin(−45°), ⎪ x′ = (x − y − 2), ⎪ ⎝ ⎠ ⎝ ⎠ ⎪ 2 ⎨ → ⎨ ⎪ y′ = − ⎛ x − sin(−45°) + ⎛ y + cos(−45°) 3⎞ 1⎞ ⎪ y′ = 2 (x + y − 1), ⎪ ⎜ ⎟ ⎜ ⎟ ⎪ ⎩ ⎝ 2⎠ ⎝ 2⎠ ⎩ 2 1 2 y′2 = 2 2 ⋅ x′ ⇒ (x + y − 1) 2 = 2 2 ⋅ (x − y − 2), 2 2 откуда искомое уравнение параболы имеет вид: х2 + 2ху + у2 – 6х + 2у + 9 = 0. Задача 22. Написать уравнение гиперболы, если известны ее эксцентриситет е = 5 , фокус F(2, -3) и уравнение директрисы y′ y D1 3х – у + 3 = 0. Решение 3 B Уравнение директрисы D1: у = 3х + 3 позволяет заключить, что новая ось координат Ох′ имеет вид y = (-1/3)x + b, проходит через точку F(2, - -7 -1 α x A 0 1 3), значит, −3 = − ⋅ 2 + b, откуда b = -7/3 и Ох′ O1 K 3 a/ 5 -7/3 1 7 F x′ задается уравнением y = − x − . 3 3 Пусть начало новой системы координат находится в точке О1(х0, у0). Найдем координаты точки К как координаты точки пересечения директрисы D1 и 47 ⎧3 x − y + 3 = 0, 8 9 оси Ох′′ из системы ⎨ → xK = − , y K = − . ⎩3y + x + 7 = 0 5 5 Геометрические свойства гиперболы, которая в новых осях координат x′2 y′2 Ох′у′ имеет вид 2 − 2 = 1, позволяют найти КF как расстояние от фокуса a b F(2, -3) до директрисы D1: 3х – у + 3 = 0. 3 ⋅ (2) − (−3) + 3 12 a a KF = = , O1K = = , O1F = c = a 2 + b 2 , 9 +1 10 e 5 a 12 O1K = O1F − KF ⇒ = a 2 + b2 − , 5 10 b2 так как e = 1 + 2 = 5, b 2 = 4a 2 . Значение а находим из уравнения a a 12 3 =a 5− и получаем a = . При этом b2 = 18. 5 10 2 x′2 y′2 Уравнение гиперболы в новых координатах имеет вид − = 1. 9 2 18 Координаты нового центра найдем, зная что точка К делит отрезок О1F в OK a 5 1 отношении λ = 1 = = : KF 12 10 4 ⎧ 1 ⎪ x0 + x F 4 5 ⎪ xK = , x0 = − , ⎪ 1+1 4 2 ⎨ откуда ⎪ 1 3 y0 + y F y0 = − . ⎪y = 4 , 2 ⎪ K ⎩ 1+1 4 Из ∆ АВО: sinα = 1 10 , cosα = 3 10 . Так как поворот совершается на угол (-α): sin(-α) = − 1 10 , cos(-α) = 3 10 , то формулы преобразований координат (см. (5) в п.4.3) принимают вид: ⎧ ⎛ 5⎞ 3 ⎛ 3 ⎞⎛ 1 ⎞ ⎧ ′ 1 ⎪ ⎪ x′ = ⎜ x + ⎟ ⎝ 2 ⎠ 10 ⎝ + ⎜ y + ⎟⎜ − 2 ⎠ ⎝ 10 ⎠⎟, ⎪ x = 10 (3x − y + 6) , ⎪ ⎨ → ⎨ ⎪ y′ = − ⎛ x + 5 ⎞ ⎛ − 1 ⎞ + ⎛ y + 3 ⎞ 3 , ⎪ y′ = 1 (x + 3 y + 7) ⎪ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎪ ⎩ ⎝ 2 ⎠ ⎝ 10 ⎠ ⎝ 2 ⎠ 10 ⎩ 10 1 1 (3x − y + 6) (x + 3y + 7) 2 2 и уравнение гиперболы принимает вид 10 − 10 = 1, 92 18 4(3х – у +6)2 – (х + 3у + 7)2 = 180 или 7х2 – у2 – 6ху – 18у + 26х + 17 = 0. 48 Задача 23. Найти полярный угол отрезка, направленного из точки (5, 3) в точку (6, 2 3). Решение ρ = (6 − 5) 2 + (2 3 − 3) 2 = 2, cos ϕ = 1 2, sin ϕ = 3 2 ⇒ ϕ = 60°. (см. п.5.2). Задача 24. Составить уравнение прямой в полярных координатах, считая известными расстояние р от полюса до прямой и угол α от полярной оси до луча, направленного из полюса перпендикулярно к прямой. M (ρ, ϕ) Решение L Известны ОР = р, ∠ РОА = α, произвольная точка М P прямой L имеет координаты (ρ, ϕ). β Точка М лежит на прямой L в том и только в том случае, α когда проекция точки М на луч ОР совпадает с точкой Р, O A т.е. когда р = ρ⋅cosβ, где ∠ РОМ = β. Угол ϕ = α + β и уравнение прямой L принимает вид ρ⋅cos(ϕ - α) = p. Задача 25. Найти полярные уравнения указанных кривых: 1). x = a, a > 0 Решение ρ⋅cosϕ = a → ρ = a/cosϕ. a 0 ρ 2). y = b, b > 0 b Решение ρ⋅sinϕ = b → ρ = b/sinϕ. 0 ρ 3). (х2 + у2)2 = а2ху Решение: xy ≥ 0, a2 ρ = a ρ cos ϕ sin ϕ → ρ = sin 2ϕ, sin 2ϕ ≥ 0 . 4 2 2 2 2 Уравнение кривой в полярных координатах имеет a вид ρ = sin 2ϕ , ϕ∈ [ 0, π 2] ∪ [ π, 3π 2] и задает 2 двухлепестковую розу: Задача 26. Построить заданные в полярной системе координат линии: 1). ρ = 2a⋅sinϕ, a > 0. Решение y x 2 + y 2 = 2a ⋅ , x +y 2 2 a 2 2 x + y – 2ay = 0, ρ 0 49 x2 + (y – a)2 = a2. 2). ρ = 2 + cosϕ. Решение Линия получается, если каждый радиус-вектор окружности ρ = cosϕ увеличить на два. Найдем координаты контрольных точек: ϕ = 0, ρ = 3; ϕ = π/2, ρ = 2; ϕ = π, ρ = 1. 9 3). ρ = 4 − 5cos ϕ Решение 4 – 5⋅cosϕ > 0, cosϕ < 4/5, ϕ ∈ (arccos(4/5), 2π – arccos(4/5)). При этом ρ⋅(4 - 5⋅cosϕ) = 9. Переходя к декартовым координатам, получаем ⎛ x ⎞ x2 + y2 ⎜ 4 − 5 ⎟ = 9, ⎜ x2 + y 2 ⎟ ⎝ ⎠ 16 (x 2 + y 2) = (5 x + 9) , 2 4 x 2 + y 2 = 5 x + 9, 16x2 + 16y2 = 25x2 + 90x + 81, 9x2 + 90x – 16y2 +81 = 0, 2 2 (x + 5) 2 y 2 9(x + 5) – 16y = 144 → − 2 = 1 – правая ветвь 42 3 гиперболы при указанных ϕ. Кривую можно было построить по точкам, например, при ϕ = π ρ = 9/10. 4). ρ2⋅sin2ϕ = а2. Решение sin 2ϕ ≥ 0, ϕ∈ [ 0, π 2] ∪ [ π, 3π 2]. a ρ= . sin 2ϕ Перейдем к декартовым координатам, учтем, что ρ2 2 xy sin 2ϕ = 2 cos ϕ ⋅ sin ϕ ⋅ 2 = 2 , ρ x + y2 a2 2 тогда кривая принимает вид гиперболы: y = . x Задача 27. Какие линии задаются следующими параметрическими уравне- ниями: 50

Рассмотрим соотношение вида F(x, y)=0 , связывающее переменные величины x и у . Равенство (1) будем называть уравнением с двумя переменными х, у, если это равенство справедливо не для всех пар чисел х и у . Примеры уравнений: 2х + 3у = 0, х 2 + у 2 – 25 = 0,

sin x + sin y – 1 = 0.

Если (1) справедливо для всех пар чисел х и у, то оно называется тождеством . Примеры тождеств: (х + у) 2 - х 2 - 2ху - у 2 = 0, (х + у)(х - у) - х 2 + у 2 = 0.

Уравнение (1) будем называть уравнением множества точек (х; у), если этому уравнению удовлетворяют координаты х и у любой точки множества и не удовлетворяют координаты никакой точки, не принадлежащие этому множеству.

Важным понятием аналитической геометрии является понятие уравнения линии. Пусть на плоскости заданы прямоугольная система координат и некоторая линия α.


Определение. Уравнение (1) называется уравнением линии α (в созданной системе координат), если этому уравнению удовлетворяют координаты х и у любой точки, лежащей на линии α , и не удовлетворяют координаты никакой точки, не лежащей на этой линии.

Если (1) является уравнением линии α, то будем говорить, что уравнение (1) определяет (задает) линию α.

Линия α может определятся не только уравнением вида (1), но и уравнением вида

F (P, φ) = 0 , содержащим полярные координаты.

  • уравнение прямой с угловым коэффициентом;

Пусть дана некоторая прямая, не перпендикулярная, оси ОХ . Назовем углом наклона данной прямой к оси ОХ угол α , на который нужно повернуть ось ОХ , чтобы положительное направление совпало с одним из направлений прямой. Тангенс угла наклона прямой к оси ОХ называют угловым коэффициентом этой прямой и обозначают буквой К .

К=tg α
(1)

Выведем уравнение данной прямой, если известны ее К и величина в отрезке ОВ , которой она отсекает на оси ОУ .

(2)
y=kx+b
Обозначим через М " точку плоскости (х; у). Если провести прямые BN и NM , параллельные осям, то образуются r BNM – прямоугольный. Т. MC C BM <=>, когда величины NM и BN удовлетворяют условию: . Но NM=CM-CN=CM-OB=y-b, BN=x => учитывая (1), получаем, что точка М (х; у) С на данной прямой <=>, когда ее координаты удовлетворяют уравнению: =>

Уравнение (2) называют уравнением прямой с угловым коэффициентом. Если K=0 , то прямая параллельна оси ОХ и ее уравнение имеет вид y = b.

  • уравнение прямой, проходящей через две точки;
(4)
Пусть даны две точки М 1 (х 1 ; у 1) и М 2 (х 2 ; у 2). Приняв в (3) точку М (х; у) за М 2 (х 2 ; у 2), получим у 2 -у 1 =k(х 2 - х 1). Определяя k из последнего равенства и подставляя его в уравнение (3), получаем искомое уравнение прямой: . Это уравнение, если у 1 ≠ у 2 , можно записать в виде:

Если у 1 = у 2 , то уравнение искомой прямой имеет вид у = у 1 . В этом случае прямая параллельна оси ОХ . Если х 1 = х 2 , то прямая, проходящая через точки М 1 и М 2 , параллельна оси ОУ , ее уравнение имеет вид х = х 1 .

  • уравнение прямой, проходящей через заданную точку с данным угловым коэффициентом;
(3)
Аx + Вy + С = 0
Теорема. В прямоугольной системе координат Оху любая прямая задается уравнением первой степени:

и, обратно, уравнение (5) при произвольных коэффициентах А, В, С (А и В ≠ 0 одновременно) определяет некоторую прямую в прямоугольной системе координат Оху.

Доказательство.

Сначала докажем первое утверждение. Если прямая не перпендикулярна Ох, то она определяется уравнением первой степени: у = kx + b , т.е. уравнением вида (5), где

A = k, B = -1 и C = b. Если прямая перпендикулярна Ох, то все ее точки имеют одинаковые абсциссы, равные величине α отрезка, отсекаемого прямой на оси Ох.

Уравнение этой прямой имеет вид х = α, т.е. также является уравнение первой степени вида (5), где А = 1, В = 0, С = - α. Тем самым доказано первое утверждение.

Докажем обратное утверждение. Пусть дано уравнение (5), причем хотя бы один из коэффициентов А и В ≠ 0 .

Если В ≠ 0 , то (5) можно записать в виде . Пологая , получаем уравнение у = kx + b , т.е. уравнение вида (2) которое определяет прямую.

Если В = 0 , то А ≠ 0 и (5) принимает вид . Обозначая через α, получаем

х = α , т.е. уравнение прямой перпендикулярное Ох.

Линии, определяемые в прямоугольной системе координат уравнением первой степени, называются линиями первого порядка.

Уравнение вида Ах + Ву + С = 0 является неполным, т.е. какой – то из коэффициентов равен нулю.

1) С = 0; Ах + Ву = 0 и определяет прямую, проходящую через начало координат.

2) В = 0 (А ≠ 0) ; уравнение Ах + С = 0 Оу.

3) А = 0 (В ≠ 0) ; Ву + С = 0 и определяет прямую параллельную Ох.

Уравнение (6) называется уравнением прямой «в отрезках». Числа а и b являются величинами отрезков, которые прямая отсекает на осях координат. Эта форма уравнения удобна для геометрического построения прямой.

  • нормальное уравнение прямой;

Аx + Вy + С = 0 – общее уравнение некоторой прямой, а (5) x cos α + y sin α – p = 0 (7)

ее нормальное уравнение.

Так как уравнение (5) и (7) определяют одну и ту же прямую, то (А 1х + В 1у + С 1 = 0 и

А 2х + В 2у + С 2 = 0 => ) коэффициенты этих уравнений пропорциональны. Это означает, что помножив все члены уравнения (5) на некоторый множитель М, мы получим уравнение МА х + МВ у + МС = 0 , совпадающее с уравнением (7) т.е.

МА = cos α, MB = sin α, MC = - P (8)

Чтобы найти множитель М, возведем первые два из этих равенств в квадрат и сложим:

М 2 (А 2 + В 2) = cos 2 α + sin 2 α = 1

(9)

Равенство вида F(x, у) = 0 называется уравнением с двумя переменными х, у, если оно справедливо не для всяких пар чисел х, у. Говорят, что два числа х = x 0 , у = y 0 удовлетворяют некоторому уравнению вида F(x, y) = 0, если при подстановке этих чисел вместо переменных х и у в уравнение его левая часть обращается в нуль.

Уравнением данной линии (в назначенной системе координат) называется такое уравнение с двумя переменными, которому удовлетворяют координаты каждой точки, лежащей на этой линии, и не удовлетворяют координаты каждой точки, не лежащей на ней.

В дальнейшем вместо выражения «дано уравнение линии F(x, у) = 0» мы часто будем говорить короче: дана линия F(x, у) = 0.

Если даны уравнения двух линий F(x, у)= 0 и Ф(x, у) = 0, то совместное решение системы

F(x,y) = 0, Ф(х, у) = 0

дает все точки их пересечения. Точнее, каждая пара чисел, являющаяся совместным решением этой системы, определяет одну из точек пересечения,

157. Даны точки *) M 1 (2; -2), М 2 (2; 2), M 3 (2; - 1), M 4 (3; -3), M 5 (5; -5), М 6 (3; -2). Установить, какие из данных точек лежат на линии, определенной уравнением х + y = 0, и какие не лежат на ней. Какая линия определена данным уравнением? (Изобразить ее на чертеже.)

158. На линии, определенной уравнением х 2 + у 2 = 25, найти точки, абсциссы которых равны следующим числам: 1) 0, 2) -3, 3) 5, 4) 7; на этой же линии найти точки, ординаты которых равны следующим числам: 5) 3, 6) -5, 7) -8. Какая линия определена данным уравнением? (Изобразить ее на чертеже.)

159. Установить, какие линии определяются следующими уравнениями (построить их на чертеже): 1)x - у = 0; 2) х + у = 0; 3) x - 2 = 0; 4)x + 3 = 0; 5) y - 5 = 0; 6) у + 2 = 0; 7) х = 0; 8) у = 0; 9) х 2 - хy = 0; 10) ху + у 2 = 0; 11) х 2 - у 2 = 0; 12) ху = 0; 13) у 2 - 9 = 0; 14) х 2 - 8x + 15 = 0; 15) у 2 + by + 4 = 0; 16) х 2 у - 7ху + 10y = 0; 17) у - |х|; 18) х - |у|; 19) y + |x| = 0; 20) x + |у| = 0; 21) у = |х - 1|; 22) y = |x + 2|; 23) х 2 + у 2 = 16; 24) (х - 2) 2 + {у- 1) 2 = 16; 25 (x + 5) 2 + (у-1) 2 = 9; 26) (x - 1) 2 + y 2 = 4; 27) x 2 + (y + 3) 2 = 1; 28) (x - 3) 2 + y 2 = 0; 29) x 2 + 2y 2 = 0; 30) 2x 2 + 3y 2 + 5 = 0; 31) (x - 2) 2 + (y + 3) 2 + 1 = 0.

160. Даны линии: l)x + y = 0; 2)х - у = 0; 3)x 2 + у 2 - 36 = 0; 4) х 2 + у 2 - 2х + у = 0; 5) х 2 + у 2 + 4х - 6у - 1 = 0. Определить, какие из них проходят через начало координат.

161. Даны линии: 1) х 2 + у 2 = 49; 2) {х - 3) 2 + (у + 4) 2 = 25; 3) (х + 6) 2 + (y - З) 2 = 25; 4) (х + 5) 2 + (y - 4) 2 = 9; 5) х 2 + у 2 - 12x + 16у - 0; 6) х 2 + у 2 - 2x + 8y + 7 = 0; 7) х 2 + у 2 - 6х + 4у + 12 = 0. Найти точки их пересечения: а) с осью Ох; б) с осью Оу.

162. Найти точки пересечения двух линий:

1) х 2 + у 2 - 8; х - у =0;

2) х 2 + у 2 - 16х + 4у + 18 = 0; х + у = 0;

3) х 2 + у 2 - 2х + 4у - 3 = 0; х 2 + у 2 = 25;

4) х 2 + у 2 - 8y + 10у + 40 = 0; х 2 + у 2 = 4.

163. В полярной системе координат даны точки M 1 (l; π/3),M 2 (2; 0).М 3 (2; π/4), М 4 (√3; π/6) и M 5 (1; 2/3π). Установить, какие из этих точек лежат на линии, определенной в полярных координатах уравнением р = 2cosΘ, и какие не лежат на ней. Какая линия определяется данным уравнением? (Изобразить ее на чертеже.)

164. На линии, определенной уравнением p = 3/cosΘ найти точки, полярные углы которых равны следующим числам: а) π/3 , б) - π/3, в) 0, г) π/6. Какая линия определена данным уравнением? (Построить ее на чертеже.)

165. На линии, определенной уравнением p = 1/sinΘ, найти точки, полярные радиусьмкоторых равны следующим числам: а) 1 6) 2, в) √2 . Какая линия определена данным уравнением? (Построить ее на чертеже.)

166. Установить, какие линии определяются в полярных координатах следующими уравнениями (построить их на чертеже): 1) р = 5; 2) Θ = π/2; 3) Θ = - π/4; 4) р cosΘ = 2; 5) p sinΘ = 1; 6.) p = 6cosΘ; 7) р = 10 sinΘ; 8) sinΘ = 1/2; 9) sinp = 1/2.

167. Построить на черТёЖе следующие спйралй Архимеда: 1) р = 20; 2) р = 50; 3) p = Θ/π; 4) р = -Θ/π.

168. Построить на чертеже следующие гиперболиче-ские спирали: 1) p = 1/Θ; 2) p = 5/Θ; 3) р = π/Θ; 4) р= - π/Θ

169. Построить на чертеже следующие логарифми-ческие спирали: 1) р = 2 Θ ; 2) p = (1/2) Θ .

170. Определить длины отрезков, на которые рассе-кает спираль Архимеда р = 3Θ луч, выходящий из полюса и наклоненный к полярной оси под углом Θ = π/6. Сделать чертеж.

171. На спирали Архимеда р = 5/πΘ взята точка С, полярный радиус которой равен 47. Определить, на сколько частей эта спираль рассекает полярный радиус точки С. Сделать чертеж.

172. На гиперболической спирали P = 6/Θ найти точку Р, полярный радиус которой равен 12. Сделать чертеж.

173. На логарифмической спирали р = 3 Θ найти точку P, полярный радиус которой равен 81. Сделать чертеж.

Рассмотрим функцию, заданную формулой (уравнением)

Этой функции, а следовательно, и уравнению (11) соответствует на плоскости вполне определенная линия, которая является графиком данной функции (см. рис. 20). Из определения графика функции следует, что эта линия состоит из тех и только тех точек плоскости координаты которых удовлетворяют уравнению (11).

Пусть теперь

Линия, являющаяся графиком этой функции, состоит из тех и только тех точек плоскости координаты которых удовлетворяют уравнению (12). Это значит, что если точка лежит на указанной линии, то ее координаты удовлетворяют уравнению (12). Если же точка не лежит на этой линии, то ее координаты уравнению (12) не удовлетворяют.

Уравнение (12) разрешено относительно у. Рассмотрим уравнение, содержащее х и у и не разрешенное относительно у, например уравнение

Покажем, что и этому уравнению в плоскости соответствует линия, а именно - окружность с центром в начале координат и радиусом, равным 2. Перепишем уравнение в виде

Его левая часть представляет собой квадрат расстояния точки от начала координат (см. § 2, п. 2, формула 3). Из равенства (14) следует, что квадрат этого расстояния равен 4.

Это значит, что любая точка , координаты которой удовлетворяют уравнению (14), а значит и уравнению (13), находится от начала координат на расстоянии, равном 2.

Геометрическое место таких точек есть окружность с центром в начале координат и радиусом 2. Эта окружность и будет линией, соответствующей уравнению (13). Координаты любой ее точки, очевидно, удовлетворяют уравнению (13). Если же точка не лежит на найденной нами окружности, то квадрат ее расстояния от начала координат будет либо больше, либо меньше 4, а это значит, что координаты такой точки уравнению (13) не удовлетворяют.

Пусть теперь, в общем случае, дано уравнение

в левой части которого стоит выражение, содержащее х и у.

Определение. Линией, определяемой уравнением (15), называется геометрическое место точек плоскости координаты которых удовлетворяют этому уравнению.

Это значит, что если линия L определяется уравнением то координаты любой точки L удовлетворяют этому уравнению, а координаты всякой точки плоскости лежащей вне L, уравнению (15) не удовлетворяют.

Уравнение (15) называется уравнением линии

Замечание. Не следует думать, что любое уравнение определяет какую-нибудь линию. Например, уравнение не определяет никакой линии. В самом деле, при любых действительных значениях и у левая часть данного уравнения положительна, а правая равна нулю, и следовательно, этому уравнению не могут удовлетворять координаты никакой точки плоскости

Линия может определяться на плоскости не только уравнением, содержащим декартовы координаты, но и уравнением в полярных координатах. Линией, определяемой уравнением в полярных координатах, называется геометрическое место точек плоскости, полярные координаты которых удовлетворяют этому уравнению.

Пример 1. Построить спираль Архимеда при .

Решение. Составим таблицу для некоторых значений полярного угла и соответствующих им значений полярного радиуса .

Строим в полярной системе координат точку , которая, очевидно, совпадает с полюсом; затем, проведя ось под углом к полярной оси, строим на этой оси точку с положительной координатой после этого аналогично строим точки с положительными значениями полярного угла и полярного радиуса (оси для этих точек на рис. 30 не указаны).

Соединив между собой точки получим одну ветвь кривой, обозначенную на рис. 30 жирной линией. При изменении от 0 до эта ветвь кривой состоит из бесконечного числа витков.