Осмотические электростанции. Осмотическая электростанция в норвегии Европа: реализованные проекты

Начала работу первая в мире электростанция, позволяющая извлекать энергию из разницы в солёности морской и пресной воды. Установка построена норвежской государственной компанией Statkraft в городке Тофте (Tofte) близ Осло.

Гигантский агрегат вырабатывает электричество, используя природное явление осмоса (osmosis), которое позволяет клеткам наших организмов не терять влагу, а растениям поддерживать вертикальное положение.

Поясним. Если разделить два водных раствора с разными концентрациями солей полупроницаемой мембраной, то молекулы воды будут стремиться перейти в ту часть, где их меньше, то есть туда, где концентрация растворённых веществ выше. Этот процесс приводит к увеличению объёма раствора в одном из отделений.

Нынешняя опытная электростанция расположена у устья реки, впадающей в Северное море. Морскую и речную воду направляют в камеру, разделённую мембраной. В отсеке с солёной водой осмос создаёт давление, эквивалентное воздействию водяного столба высотой 120 метров. Поток идёт на турбину, вращающую генератор.

Правда, если вычесть ту энергию, что идёт на подпитывающие насосы, то получается, что пока норвежская махина создаёт очень мало энергии (2-4 киловатта). Отметим, что чуть позже планируется повысить выход до 10 киловатт, а через 2-3 года создать ещё одну тестовую версию, вырабатывающую до одного мегаватта энергии.

К тому же по ходу эксплуатации установки предстоит решить массу проблем. Например, нужно будет найти способ борьбы с загрязняющими фильтры бактериями. Ведь, несмотря на предварительную очистку воды, вредоносные микроорганизмы могут заселить все участки системы.

«Без сомнений, трудности будут, – говорит глава нового предприятия Стейн Эрик Скилхаген (Stein Erik Skilhagen). – Какие именно, мы пока предсказать не в состоянии». Но ведь надо же с чего-то начинать.

Схемы, иллюстрирующие явление осмоса и строение новой станции. Подробнее о технологии и предыстории её развития можно почитать в этом PDF-документе (иллюстрации University of Miami, Statkraft).

«Потенциал технологии очень высок», — добавил на церемонии открытия министр энергетики Терье Риис-Йохансен (Terje Riis-Johansen).

По оценкам Statkraft, занимающейся разработкой и созданием установок, вырабатывающих возобновляемую энергию, общемировой годовой потенциал осмотической энергии (osmotic power) составляет 1600-1700 тераватт-часов. А это ни много ни мало – 10% всего мирового потребления энергии (и 50% энергопотребления Европы).

Многие крупные города стоят близ устья рек, так почему бы им не обзавестись подобными электростанциями? Тем более что встроить такую машину можно даже в подвал офисного здания.

Моря и реки, неисчерпаемые источники энергии, не только приводят в движение турбины приливных, волновых электростанций и ГЭС. Морские и пресные воды могут работать в тандеме - и тогда в роли энергетического генератора выступает такой фактор как изменение солёности воды. Несмотря на то, что солевая энергетика находится лишь в начале своего технологического развития, у неё уже есть очевидные перспективы.

Принцип работы и потенциал солевых станций

В основу солевой генерации положен естественный процесс, называемый осмосом. Он широко представлен в природе, как в живой, так и в неживой. В частности, за счёт осмотического давления соки в деревьях в ходе обмена веществ преодолевают значительное расстояние от корней до вершины, поднимаясь на внушительную высоту - к примеру, для секвойи она составляет порядка сотни метров. Аналогичное явление - осмос - присуще водным объектам и проявляется в перемещении молекул. Движение частиц осуществляется из зоны с большим количеством молекул воды в среду с солевыми примесями.

Перепады солёности возможны в ряде случаев, в том числе при контакте моря или озёр с более пресными водами - реками, лиманами и лагунами у побережья. Кроме того, соседство солёных и пресных вод возможно в регионах с засушливым климатом, в районах расположения подземных солевых месторождений, соляных куполов, а также под морским дном. Разница в солёности сообщающихся масс воды может возникать искусственным путём - в испарительных водоёмах, солнечных стратифицированных прудах, в растворах сбросов химической промышленности и в водных ёмкостях энергетических объектов, в том числе АЭС.

Движение ионов, как и любая природная сила, может быть использовано для выработки энергии. Классический принцип солевой генерации предусматривает обустройство проницаемой для ионов мембраны между пресным и солёным растворами. При этом частицы пресного раствора будут переходить через мембрану, давление солёной жидкости повышается и компенсирует осмотические силы. Так как в природе поступление пресной воды в реках постоянно, то движение ионов будет стабильным, поскольку разница давлений не изменится. Последняя приводит в действие гидротурбины генераторов и производит таким образом энергию.

Возможности выработки энергии зависят прежде всего от показателей солёности воды, а также от уровня её расхода в речном потоке. Усреднённая отметка солёности Мирового океана составляет 35 килограммов на кубометр воды. Осмотическое давление при таком показателе достигает 24 атмосферы, что эквивалентно силе падения воды с высоты плотины в 240 метров. Совокупный сброс воды из пресных водоёмов в моря составляет 3,7 тыс. кубических километров в год. Если применить для генерации 10% потенциала крупнейших рек Евросоюза - Вислы, Рейна и Дуная, то выработанный объём энергии превысит среднее потребление в Европе втрое.

Ещё немного впечатляющих цифр: при обустройстве электростанций в зоне впадения Волги в Каспий можно будет произвести за год 15 ТВт⋅ч энергии. Генерация 10 ТВт⋅ч и 12 ТВт⋅ч энергии вполне возможна в районах слияния Днепр-Чёрное море и Амур-Татарский пролив соответственно. По мнению специалистов норвежской компании Statkraft, суммарный потенциал солевой энергетики достигает 0,7–1,7 тыс. ТВт⋅ч или 10% от мировых потребностей. По самым оптимистичным оценкам экспертов, максимальное задействование возможностей использования солёности воды позволит получить больше электроэнергии, чем человечество потребляет в настоящее время.

Европа: реализованные проекты

Первые попытки учёных добиться выработки электроэнергии путём создания осмотического давления, которое было бы способно приводить в движение турбины генераторов, относятся к семидесятым годам двадцатого века. Уже тогда было предложено задействовать в качестве основного компонента генерирующей установки нового типа полупроницаемую мембрану, неприступную для обратного хода солей, но вполне свободно пропускающую молекулы воды.

Первые разработки вряд ли можно было назвать удачными - мембраны не обеспечивали достаточно мощного потока. Требовались материалы, которые выдерживали бы давление в два десятка раз большее, чем в водопроводных сетях, и при этом имели бы пористую структуру. Прогресс в разработках наметился в середине восьмидесятых годов, после того, как в норвежской компании SINTEF создали дешёвый модифицированный полиэтилен на основе керамики.

После получения новой технологии норвежцы фактически открыли путь к практической реализации проектов солевой генерации. В 2001 году правительство страны выделило компании Statkraft грант на постройку экспериментальной осмотической установки с совокупной площадью мембран в 200 квадратных метров. На возведение станции ушло около $20 млн. Объект построили в городе Тофте (расположен в коммуне Хурум). Базой для строительства послужила инфраструктура бумажного комбината Södra Cell Tofte.

Бумажный комбинат Södra Cell Tofte с экспериментальной установкой

Мощность генератора оказалась более чем скромной - станция производит максимум 4 кВт энергии, чего достаточно лишь для работы двух электрочайников. В перспективе планируется нарастить мощностной показатель до 10 кВт. Тем не менее, следует помнить, что пилотный проект был запущен в качестве эксперимента и предназначался прежде всего для отработки технологий и проверки теоретических выкладок на практике. Предполагается, что станция может быть переведена на коммерческий режим эксплуатации, если эксперимент признают удачным. Рентабельная мощность генератора при этом должна быть повышена до 5 Вт из расчёта на квадратный метр площади мембран, сейчас же этот показатель для норвежской станции - не более 1 Вт на квадратный метр.

Экспериментальная осмотическая установка

Следующим этапом развития солевой генерации на мембранных технологиях стал запуск в 2014 году электростанции в нидерландском Афслёйтдейке. Начальная мощность объекта составила 50 кВт, по непроверенным данным, она может быть наращена до десятков мегаватт. Станция, построенная у побережья Северного моря, в случае развития проекта сможет удовлетворять потребности в энергии 200 тыс. домохозяйств, рассчитали в компании Fudji, выступившей в роли поставщика мембран.

Россия и Япония как перспективные территории

Если говорить о том, в каких регионах мира появятся следующие станции, то больше всего перспектив у такого вида энергетики в Японии. Это связано в первую очередь с налаженным производством необходимых компонентов - компании страны выпускают 70% от мирового объёма осмотических мембран. Вероятно, сработает и географический фактор -специалисты Токийского технического института пришли к выводу о том, что Япония обладает большим потенциалом для развития солевой энергетики. Острова страны со всех сторон окружены океаническими водами, в которые впадает большое количество рек. Задействование осмотических станций даст возможность получать 5 ГВт энергии, что эквивалентно выработке нескольких АЭС, большая часть которых в японском регионе была закрыта после фукусимской катастрофы.

Осмотические мембраны

Не менее привлекательной для развития данного сегмента является и российская территория. По мнению отечественных специалистов, строительство осмотической станции в зоне впадения Волги в Каспийское море может быть вполне реализуемым проектом. Уровень расхода воды в устье реки составляет 7,71 тыс. кубометров в секунду, при этом потенциальная мощность солевой генерации будет колебаться в пределах 2,83 ГВт. Мощность станции, использующей 10% речного стока, составит 290 МВт. Впрочем, развитая хозяйственная деятельность в регионе, обилие фауны и флоры в дельте Волги в некоторой степени осложнит проект строительства станции - потребуется возведение ряда инженерных сооружений, каналов для пропуска рыбы и водоразделов.

Кроме того, в качестве одной из перспективных площадок для внедрения генерации осмоса выступает Крым. Хотя совокупный потенциал рек полуострова невысок, всё же он мог бы удовлетворить энергетические потребности отдельных объектов, к примеру, гостиниц. Специалисты чисто гипотетически рассматривают даже возможность использования канализационных стоков в Крыму в качестве пресного источника для осмотических станций. Объём стоков, которые сейчас сбрасываются в морскую акваторию, в летний период в регионе может превышать интенсивность потока отдельных рек. Тем не менее, в данном случае особо острым становится вопрос технологии эффективной очистки оборудования от загрязнений.

С другой стороны, несмотря на благоприятные географические условия и возможность широкого выбора для размещения генерирующих объектов, системные разработки по данным вопросам в России пока не ведутся. Хотя, по некоторым данным, в 1990 году на базе научной группы Дальневосточного научного центра Академии наук СССР проводилось изучение возможности развития солевой энергетики вплоть до состоявшихся лабораторных опытов, однако результаты этой работы остались неизвестны. Для сравнения - в той же Европе исследования в области создания осмотических станций резко активизировались под давлением экологических организаций ещё с начала девяностых годов. К этой работе в ЕС активно привлекаются всевозможные стартапы, практикуются государственные дотации и гранты.

Пути дальнейшего развития технологий

Наиболее перспективные исследования в отрасли солевой энергетики направлены в основном на повышение эффективности производства энергии с применением упомянутой мембранной технологии. Французским исследователям, в частности, удалось увеличить показатель выработки энергии до уровня 4 кВт на квадратный метр мембраны, что уже вплотную приблизило к реальности вероятность перевода станций на коммерческую основу. Ещё дальше пошли учёные из США и Японии - они сумели применить в мембранной структуре технологию графеновых плёнок. Высокая степень проницаемости достигнута за счёт сверхмалой толщины мембраны, которая не превышает величину атома. Предполагается, что с использованием графеновых мембран выработку энергии на квадратный метр из поверхности можно будет нарастить до 10 кВт.

Группа специалистов из Федеральной политехнической школы Лозанны (Швейцария) занялась исследованием возможности эффективного захвата заряда энергии сторонним путём - без применения турбин генераторов, а непосредственно в процессе прохождения ионов через мембраны. Для этого они использовали в тестовых установках пластины из дисульфида молибдена толщиной в три атома. Данный материал является сравнительно дешёвым, а количество его запасов в природе достаточно велико.

В пластинах делаются микроотверстия для прохождения заряженных частиц солей, которые в процессе движения генерируют энергию. Одна такая пора мембраны может давать до 20 нановатт. По данным Швейцарского федерального технологического института в Цюрихе, мембраны такого типа с площадью в 0,3 квадратных метра вырабатывают порядка мегаватта энергии. Очевидно, что такой показатель в случае успешных экспериментов можно будет считать настоящим прорывом в отрасли. К настоящему же времени исследования находятся на начальном этапе, учёные уже столкнулись с первой проблемой - они пока не в состоянии сделать большое количество равномерно расположенных наноотверстий в мембранах.

В США, Израиле и Швеции тем временем разрабатываются способы получения энергии путём обратного электродиализа - одной из разновидностей мембранной технологии. Данная методика, предусматривающая применение мембран ионоселективного типа, позволяет реализовать схему прямого преобразования солёности воды в электроэнергию. В роли номинального элемента генерации выступает электродиализная батарея, состоящая из электродов и помещённых между ними нескольких мембран, предназначенных отдельно для обеспечения обмена катионов и анионов.

Схема обратного электродиализа

Мембраны образуют несколько камер, в которые поступают растворы с разной степенью насыщенности солями. При прохождении ионов между пластинами в определённом направлении на электродах накапливается электроэнергия. Возможно, с применением самых новых мембранных технологий эффективность таких установок будет высокой. Пока же эксперименты с созданием установок схожей конструкции - с диалитическими батареями - не показали впечатляющих результатов. В частности, применение катионных и анионных мембран даёт всего лишь 0,33 ватта на квадратный метр мембран. Последние же достаточно дороги и недолговечны.

В целом мембранные технологии не осваиваются с нуля - принципиально такие конструкции похожи на пластины, применяемые в установках для опреснения воды, однако при этом они гораздо тоньше и сложнее в производстве. Компании-лидеры выпуска опреснительных мембран, в том числе General Electric, пока не берутся за поставки пластин для осмотических станций. По данным пресс-службы корпорации, к налаживанию производства мембран для энергетики она приступит не ранее, чем через пять или десять лет.

На фоне сложностей с развитием традиционных мембранных технологий ряд исследователей посвятили свою деятельность поиску альтернативных способов солевой генерации. Так, физик Дориано Броджоли из Италии предложил использовать солёность воды для извлечения энергии при помощи ионистора - конденсатора с большой ёмкостью. Накопление энергии происходит на электродах из активированного угля в процессе последовательного поступления в одну и ту же камеру пресной и солёной воды. Учёному в ходе практического эксперимента удалось сгенерировать за один цикл наполнения резервуара 5 микроджоулей энергии. Потенциал своей установки он оценил гораздо выше - до 1,6 килоджоуля на один литр пресной воды при условии использования ионисторов более высокой ёмкости, что вполне сопоставимо с мембранными генераторами.

Схожим путём пошли американские специалисты из Стэнфордского университета. Конструкция их батарей предусматривает заполнение камеры батареи пресной водой с дальнейшей небольшой подзарядкой из внешнего источника. После смены пресной на морскую воду за счёт возрастания количества ионов в десятки раз электрический потенциал между электродами повышается, что приводит к выработке большего количества энергии, чем потраченное на подзарядку батареи.

Совсем другой принцип использования солёности воды является достаточно сложным в реализации, однако он уже опробован на макетах генерирующих установок. Он предусматривает использование разницы давлений насыщенных паров над водными объектами с солёной и пресной водой. Дело в том, что с наращиванием степени солёности воды давление пара над её поверхностью снижается. Разницу давления можно использовать для выработки энергии.

При задействовании микротурбин можно добиться получения до 10 ватт энергии с каждого квадратного метра теплообменника, однако для этого требуются только водные объекты с высокой степенью солёности - к примеру, Красное или Мёртвое моря. Кроме того, технология предусматривает необходимость поддержания низкого, близкого к вакууму, атмосферного давления внутри установки, обеспечение чего в условиях нахождения генератора в открытой акватории является проблематичным.

Энергия из соли: плюсов больше

В сфере солевой генерации, как и в других энергетических отраслях, приоритетным стимулом развития является экономический фактор. В этом плане солевая энергетика выглядит более чем привлекательной. Так, по мнению специалистов, при условии усовершенствования существующих технологий производства энергии с использованием мембран, себестоимость выработки составит €0,08 за 1 кВт - даже при отсутствии субсидирования генерирующих компаний.

Для сравнения, себестоимость производства энергии на ветряных станциях в европейских странах составляет от €0,1 до €0,2 за киловатт. Угольная генерация обходится дешевле - в €0,06–0,08, газоугольная - €0,08–0,1, однако следует учесть, что тепловые станции загрязняют атмосферный воздух. Таким образом, в ценовом сегменте осмотические станции имеют явное преимущество перед остальными видами альтернативной энергетики. В отличие от ветряных и солнечных станций, солевые генераторы более эффективны и технически - их работа не зависит от времени суток и сезона, а уровень солёности воды - практически постоянен.

Строительство осмотических станций, в противовес ГЭС и иным типам станций на водных объектах, не требует затрат на возведение специальных гидротехнических сооружений. В других видах морской энергетики ситуация обстоит хуже. Пронедра писали ранее, что строительство приливных станций требует возведения масштабной и сложной инфраструктуры. Напомним, аналогичные проблемы касаются объектов энергетики, работающих на силе океанических течений и морских волн.

Как одно из направлений альтернативной энергетики, солевой генерации характерен «экологический плюс» - работа осмотических станций абсолютно безопасна для окружающей среды, она не нарушает естественный баланс живой природы. Процесс генерации энергии из солёности воды не сопровождается шумовыми эффектами. Для запуска станций не приходится изменять ландшафт. У них нет выбросов, отходов или каких-то испарений, в связи с чем такие станции могут устанавливаться в том числе непосредственно в городах. Станции всего лишь используют для выработки энергии обычные природные процессы опреснения солёной воды в устьях рек и никак не влияют на их ход.

Несмотря на ряд очевидных преимуществ, солевая энергетика имеет и определённые недостатки, связанные в первую очередь с несовершенством имеющихся технологий. Кроме упомянутых выше проблем с созданием высокопродуктивных надёжных и при этом недорогих мембран, остро стоит вопрос о разработке эффективных фильтров, поскольку поступающая на осмотическую электростанцию вода должна тщательно очищаться от органики, забивающей каналы, предназначенные для прохождения ионов.

К недостаткам станций можно отнести и географическую ограниченность возможности их применения - такие генераторы устанавливаются только на границах пресных и солёных водоёмов, то есть в устьях рек, или на солёных озёрах. Тем не менее, даже при имеющихся недостатках и на фоне своих огромных преимуществ, и при условии преодоления проблем технологического плана, солевая энергетика, бесспорно, получает большие шансы занять одну из ключевых позиций на мировом рынке генерации.

Сразу необходимо предупредить: в заголовке нет ошибки, о космической энергии, созвучной названию, рассказа не будет. Ее мы оставим эзотерикам и фантастам. А речь пойдет о привычном явлении, с которым мы в течение всей жизни сосуществуем рядом.

Многие ли знают, за счет каких процессов соки в деревьях поднимаются на значительную высоту? Для секвойи она составляет более 100 метров. Происходит эта транспортировка соков в зону фотосинтеза за счет работы физического эффекта - осмоса . Заключается он в простом явлении: в двух растворах разной концентрации, помещенных в сосуд с полупроницаемой (проницаемой только для молекул растворителя) мембраной, спустя некоторое время появляется разность уровней. В дословном переводе с греческого языка осмос - это толчок, давление .

А теперь от живой природы вернемся к технике. Если в сосуд с перегородкой поместить морскую и пресную воду, то за счет разной концентрации растворенных солей появляется осмотическое давление и уровень морской воды поднимется. Молекулы воды перемещаются из зоны высокой их концентрации в зону раствора, где примесей больше, а молекул воды меньше.

Перепад в уровнях воды дальше используется обычным образом: это знакомая работа гидроэлектростанций. Вопрос только состоит в том, насколько эффект осмоса пригоден для промышленного применения? Расчеты показывают, что при солености морской воды 35 г/литр за счет явления осмоса создается перепад давления 2 389 464 Паскаля или около 24 атмосфер. На практике это эквивалентно плотине высотой 240 метров.

Но кроме давления еще очень важной характеристикой является селективность мембран и их проницаемость. Ведь турбины вырабатывают энергию не от перепада давления, а благодаря расходу воды. Вот здесь, до недавнего времени, существовали очень серьезные трудности. Подходящая осмотическая мембрана должна выдерживать давление, превышающее в 20 раз давление в привычном водопроводе. При этом иметь высокую пористость, но задерживать молекулы солей. Сочетание противоречивых требований долго не позволяло использовать осмос в промышленных целях.

При решении задач опреснения воды была изобретена мембрана Лоэба , которая выдерживала колоссальное давление и задерживала минеральные соли и частицы до 5 микрон. Применить мембраны Лоэба для прямого осмоса (выработки электроэнергии) долго не удавалось, т.к. они были чрезвычайно дороги, капризны в эксплуатации и обладали низкой проницаемостью.

Прорыв в использовании осмотических мембран наступил в конце 80-х годов, когда норвежские ученые Хольт и Торсен предложили использовать модифицированную полиэтиленовую пленку на керамической основе . Совершенствование структуры дешевого полиэтилена позволило создать конструкцию спиральных мембран, пригодных для использования в производстве осмотической энергии . Для проверки технологии получения энергии от эффекта осмоса в 2009 году была построена и запущена первая в мире экспериментальная осмотическая электростанция .

Норвежская энергетическая компания Statkraft, получив государственный грант, и затратив более 20 млн. долларов, стала пионером в новом виде энергетики. Построенная осмотическая электростанция вырабатывает около 4 кВт мощности, которой хватает для работы... двух электрических чайников. Но цели постройки станции гораздо серьезней: ведь отработка технологии и испытание в реальных условиях материалов для мембран открывают путь к созданию значительно более мощных сооружений.

Коммерческая привлекательность станций начинается с эффективности съема мощности более 5 Вт с квадратного метра мембран. На норвежской станции в Тофте это значение едва превышает 1 Вт/м2. Но уже сегодня испытываются мембраны с эффективностью 2,4 Вт/м2, а к 2015 году ожидается достижение рентабельного значения 5 Вт/м2.

Но есть обнадеживающая информация из исследовательского центра Франции. Работая с материалами на основе углеродных нанотрубок, ученые получили на образцах эффективность отбора энергии осмоса около 4000 Вт/м2. А это уже не просто рентабельно, а превышает эффективность практически всех традиционных источников энергии.

Еще более впечатляющие перспективы обещает применение . Мембрана толщиной в один атомный слой становится полностью проницаема для молекул воды, задерживая при этом любые другие примеси. Эффективность такого материала может превышать 10 кВт/м2. В гонку по созданию мембран высокой эффективности включились ведущие корпорации Японии и Америки.

Если удастся в течении ближайшего десятилетия решить проблему мембран для осмотических станций, то новый источник энергии займет ведущее место в обеспечении человечества экологически чистыми энергоносителями. В отличие от энергии ветра и солнца, установки прямого осмоса могут работать круглые сутки и не зависят от погодных условий.

Мировой резерв энергии осмоса огромен - ежегодный сброс пресных речных вод составляет более 3700 кубических километров. Если удастся использовать только 10% этого объема, то можно вырабатывать более 1,5ТВт/часов электрической энергии, т.е. около 50% европейского потребления.

Но не только этот источник может помочь решить энергетическую проблему. При наличии высокоэффективных мембран можно использовать энергию глубин океана. Дело в том, что соленость воды зависит от температуры, а она на разных глубинах разная.

Используя температурные градиенты солености, можно не привязываться к устьям рек в строительстве станций, а просто размещать их в акватории океанов. Но это уже задача отдаленного будущего. Хотя практика показывает, что делать прогнозы в технике - это неблагодарное занятие. И будущее уже завтра может постучаться в нашу действительность.

В заголовке нет ошибки, не из "космоса" , а именно из "осмоса"

Мы каждый день убеждаемся, что нас окружает масса самых неожиданных источников возобновляемой энергии. Кроме Солнца, ветра, течений и приливов для выработки электроэнергии можно использовать генераторы, работающие на соли – верней, на разнице, которую она создает между пресной и морской водой. Эта разница именуется градиентом солености, и благодаря явлению осмоса может быть использована для получения избыточного давления жидкости, которое преобразуется в электрическую привычными турбинами.

Известно несколько способов преобразования энергии градиента солености в электроэнергию. Наиболее перспективный на сегодня - преобразование с помощью осмоса, поэтому часто говорят об энергии градиента солености как об энергии осмоса. Но принципиально возможны и другие способы преобразования энергии градиента солености.

Явление осмоса заключается в следующем. Если взять полупроницаемую мембрану (перепонку) и поместить ее в качестве перегородки в каком-либо сосуде между пресной и соленой водой, то осмотические силы начнут как бы перекачивать пресную воду в соленую. Молекулы пресной воды будут переходить через разделительную мембрану во вторую половину сосуда, заполненную соленой водой, а молекулы соли мембрана не будет пропускать в первую половину с пресной водой. За это свойство мембрана и называется полупроницаемой. Выделяющаяся при этом процессе энергия проявляется в виде повышенного давления, возникающего в части сосуда с соленой водой. Это - осмотическое давление (иногда называют осмотическим водопадом). Максимальное значение осмотического давления - разность давлений между раствором (т. е. соленой водой) и растворителем (т. е. пресной водой), при которой осмос прекращается, что происходит из-за образования равенства давлений по обе стороны полупроницаемой мембраны. Образовавшееся повышенное давление в половине сосуда с соленой водой уравновешивает осмотические силы, вытеснявшие молекулы пресной воды через полупроницаемую мембрану в соленую воду.

Явление осмоса известно давно. Впервые его наблюдал А. Подло в 1748 г., но детальное изучение началось более столетия спустя. В 1877 г. В. Пфеффер впервые измерил осмотическое давление при изучении водных растворов тростникового сахара. В 1887 г. Вант-Гофф на основе данных опытов Пфеффера установил закон, определяющий осмотическое давление в зависимости от концентрации растворенного вещества и температуры. Он показал, что осмотическое давление раствора численно равно давлению, которое оказали бы молекулы растворенного вещества, если бы находились в газообразном состоянии при тех же значениях температуры и концентрации.

Для получения осмотической энергии необходимо иметь вблизи более или менее концентрированного раствора источник с малой концентрацией соли. В условиях Мирового океана такими источниками являются устья впадающих в него рек.

Энергия градиента солености, рассчитанная по осмотическому давлению, не подвергается ограничениям по КПД, связанным с циклом Карно; в этом заключается одна из положительных особенностей этого вида энергии. Вопрос состоит в том, как лучше преобразовать ее в электроэнергию.

Первая в мире электростанция, использующая для выработки электричества явление осмоса, открылась на днях в Норвегии. Используя в своей работе только соленую и пресную воду, нынешний прототип электростанции будет вырабатывать 2-4 киловатта, но в перспективе эта цифра значительно увеличится.Для производства энергии станция, построенная норвежской компанией Statkraft, использует явление осмоса, то есть движения растворов через мембрану в сторону большей концентрации солей. Поскольку концентрация солей в обычной морской воде выше, чем в пресной, между разделенными мембраной пресной и соленой водой развивается явление осмоса, и движение потока воды заставляет работать турбину, вырабатывающую энергию.Мощность уже запущенного прототипа невелика и составляет два-четыре киловатт-часа. Как пояснил менеджер проекта Штейн Эрик Скилхаген, цели сразу построить промышленных масштабов электростанцию перед компанией не стояло, важнее было показать, что данная технология в принципе может использоваться в энергетике.Идея использовать явление осмоса для выработки электричества была впервые предложена активистами экологических движений еще в 1992 году, отмечает сайт компании Statkraft. По расчетам инженеров, сегодня можно построить осмотическую электростанцию мощностью 1700 киловатт в час. При этом, в отличие от других станций на альтернативных источниках энергии – солнечной или ветровой – погода не будет оказывать никакого влияния на режим работы станции. Мощности существующего прототипа хватит, чтобы обеспечить электричеством всего лишь кофеварку, но уже к 2015 году Statkraft надеется построить электростанцию, снабжающую электричеством поселок из 10 тысяч частных домов.

Среди предстоящих задач – поиск более энергоэффективных мембран. У применяющихся на станции в Хуруме, что в 60 км к югу от Осло, этот показатель составляет 1 Вт/м2. Через некоторое время Statkraft увеличит мощность до 2-3 Вт, но для выхода на рентабельный уровень необходимо добиться 5 Вт.

Думая о возобновляемой энергии, сразу на ум приходит энергия ветра, солнца, приливов и отливов, и устройства их преобразовывающие – это уже привычные на сегодня ветроэнергетические установки, солнечные фотоэлектрические преобразователи, гидротурбины. Все это уже массово используются во всем мире. Но на этом список возобновляемых источников энергии не заканчивается. Есть еще один вид получения энергии, который еще не стал распространенным, но это дело будущего, - это осмотическая энергия.

Недавно стало известно о запуске в Норвегии первой в мире электростанции, позволяющей извлекать энергии из разности концентрации соли в пресной воде и в соленой воде. Производство электроэнергии осуществляется в результате явления осмоса. Станция расположена недалеко от столицы Норвегии Осло на берегу залива Осло-фьорд. Инвестором строительства выступила норвежская энергетическая компания Statkraft, которая является третьей по величине производителем энергоресурсов в скандинавском регионе, а также крупнейшим производителем энергии, основанной на возобновляемых источниках энергии в Европе. Эта новость и послужила поводом для написания данного материала.

Итак, что же такое осмотическая энергия?

Осмотическая энергия – это энергия, получаемая в результате осмоса, или как еще можно сказать, в результате процесса диффузии растворителя из менее концентрированного раствора в более концентрированный раствор.

Согласно Wikipedia.org, явление осмоса наблюдается в тех средах, где подвижность растворителя больше подвижности растворённых веществ. Важным частным случаем осмоса является осмос через полупроницаемую мембрану. Полупроницаемыми называют мембраны, которые имеют достаточно высокую проницаемость не для всех, а лишь для некоторых веществ, в частности, для растворителя.

Осмос играет большую роль в биологических процессах. Благодаря ему в клетку попадают питательные вещества, и наоборот – выводятся ненужные. Благодаря осмоса листья растений впитывают влагу.

Осмотическая энергия относится к возобновляемому источнику, который, в отличие от солнечной или ветровой энергий, производит предсказуемое и устойчивое количество энергии независимо от погоды. И это можно сказать главное одно из преимуществ этой технологии.

Почему осмос не стали использовать раньше для получения энергии, а только сейчас?

Главная сложность заключается в эффективности и стоимости использующихся мембран. Это и является камнем преткновения. Производство электроэнергии осуществляется в генераторах, на которые подается соленая вода из резервуаров, где смешивается пресная и соленая вода. Чем быстрее происходит процесс смешения, тем быстрее вода подается на турбины, тем больше можно получить энергии.

Идея производить энергию, используя осмос, появилась в 70-х годах прошлого столетия. Но тогда мембраны были еще недостаточно эффективными, как сегодня.

Осмотическая электростанция в Норвегии

Построенная опытная электростанция использует разность концентрации соли в пресной и соленой воде. Морскую и речную воду направляют в камеру, разделённую мембраной. Благодаря явлению осмоса, молекулы стремятся перейти в ту область камеры, где концентрация растворенных веществ, в данном случае соли, выше. Этот процесс приводит к увеличению объема в отделении с соленой водой. Что в результате образуется повышенное давление, которое создает напор, эквивалентное воздействию водяного столба высотой 120 метров. Этот напор направляется на турбину, вращающую генератор.

В построенной электростанции применяется мембрана с эффективностью 2-3 Ваттт/м2. Поэтому главной задачей является поиск более эффективных мембран. По словам исследователей, чтобы применение осмотической энергии было выгодным, необходимо добиться эффективности мембран более 5 Ватт/м2.

Сейчас станция генерирует не много энергии - 4 кВатт. В будущем планируется постоянно увеличивать мощность. В планах компании Ststkraft к 2015 году вывести станцию на самоокупаемый уровень.

К недостаткам можно отнести то, что не везде возможно построить такую электростанцию. Ведь для этого одновременно необходимо два источника воды – пресной и соленой. Поэтому строительство невозможно в глубине континента, а только на побережьях вблизи источника соленой воды. В будущем планируется создать мембраны, использующие разность концентрации соли только морской воды.

Еще одним недостаток – это эффективность работы станции, связанная прежде всего с эффективностью работы применяемых мембран.

Задача станции состоит главным образом в исследовании и разработки технологий для коммерческого применения в дальнейшем. Это определенно шаг вперед. Ведь мировой потенциал осмотической энергии, как заявляет компания Statkraft, оценивается в 1600-1700 ТВатт·часов энергии ежегодно, которая эквивалентна 50 процентам полного производства энергии в Европейском союзе.